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SHORT COMMUNICATION

Identification of prokaryotic and eukaryotic signal peptides and
prediction of their cleavage sites

Henrik Nielsen, Jacob Engelbrecht, Sgren Brunak and in pre-mRNA from humans and the dicotelydoneous plant
Gunnar von Heijne? Arabidopsis thaliana(Brunak et al, 1991; S.Hebsgaard,
o , _ P.Korning, J.Engelbrecht, P.Rauzand S.Brunak, submitted).
Center for Biological Sequence Analysis, Department of Chemistry, Artificial neural networks have been used for many biological
The Technical University of Denmark, DK-2800 Lyngby, Denmark and Ivsi bl Hirst d St b 1992:
2Department of Biochemistry, Arrhenius Laboratory, Stockholm University, sequence analysis problems (Hirst an ernberg, : '
S-106 91 Stockholm, Sweden Presnell and Cohen, 1993). They have also been applied to

the twin problems of predicting signal peptides and their
Ipresent address: Novo Nordisk A/S, Scientific Computing, Building 9M1, cleavage sites, but until now without leading to practically
Novo Alle, Dk-2880 Bagsveerd, Denmark applicable prediction methods with significant improvements
We have developed a new method for the identification of in performance compared with the weight matrix method
signal peptides and their cleavage sites based on neural (Arrigo et al, 1991; Ladungaet al, 1991; Schneider and
networks trained on separate sets of prokaryotic and Wrede, 1993).
eukaryotic sequence. The method performs significantly
better than previous prediction schemes and can easily be i
applied on genome-wide data sets. Discrimination between Materials and methods
cleaved signal peptides and uncleaved N-terminal signal- The data were taken from SWISS-PROT version 29 (Bairoch
anchor sequences is also possible, though with lower preci- and Boeckmann, 1994). The data sets were divided into
sion. Predictions can be made on a publicly available prokaryotic and eukaryotic entries and the prokaryotic data sets
WWW server. were further divided into Gram-positive eubacteRaipicuted
Keywords:cleavage sites/protein sorting/secretion/signal peptide and Gram-negative eubacteriaGr@cilicute9, excluding
Mycoplasmaand Archaebacteria Viral, phage and organellar
proteins were not included. In addition, two single-species
Introduction data sets were selected, a human subset of the eukaryotic data

Signal peptides control the entry of virtually all proteins to and an&scherichia colisubset of the Gram-negative data.

the secretory pathwav both in eukarvotes and prokarvote The sequence of the signal peptide and the first 30 amino
(Gierasch 1%8%' vonyi-|eijne 1990- Ryapoport 1892) '|¥he Zcids of the mature protein from the secretory protein were
comprise the N-terminal part of the amino acid chain and ar ncluded in the data set. The first 70 amino acids of each

cleaved off while the protein is translocated through the>Sduence were used from the cytoplasmic and (for the eukary-

membrane. The common structure of signal peptides fron?tes) nuclear proteins. In addition, a set of eukaryotic signal

various proteins is commonly described as a positively char ea”Ch‘.’f sequences, .e. N-terminal parts of type II .membrane
n-regionF,) followed by a hyoBI/rophobic h-regiopn and a{/neu,[?‘,ﬂlprotems (von Heijne, 1988), were extracted (see Figure 1).

but polar c-region. The (—3,-1) rule states that the residues at As an example of a large-scale application of the finished

positions—3 and —1 (relative to the cleavage site) must be Method, we used thelaemophilus influenzaBd genome—

small and neutral for cleavage to occur correctly (von Heijnethe first genome of a free-living organism to be completed

1983, 1985). (Fleischmanne_t al, 1995). We have plownl_oaded the sequences
A strong interest in the automated identification of signal®f all the predicted coding regions in theinfluenzaggenome
peptides and the prediction of their cleavage sites has bedfP™ the World Wide Web (WWW) server of the Institute for
evoked not only by the huge amount of unprocessed dat&€nomic Research at http://www.tigr.org/. Only the first 60
available, but also by the industrial need to find more effectivg?0Sitions of each sequence were analysed.
vehicles for the production of proteins in recombinant systems, We have attempted to avoid signal peptides where the
The most widely used method for predicting the location ofcleavage sites are not experimentally determined, but we are
the cleavage site is a weight matrix which was published ifnot able to eliminate them completely, since many database
1986 (von Heijne, 1986). This method is also useful forentries simply lack information about the quality of the
discriminating between signal peptides and non-signal peptide%vidence. The details of the data selection are described in the
by using the maximum cleavage site score. The originaWWW server and in an earlier paper (Nielsenal., 1996a).
matrices are commonly used today, even though the amount Redundancy in the data sets was avoided by excluding pairs
of signal peptide data available has increased since 1986 byai sequences which were functionally homologous, i.e. those
factor of 5-10. that had more than 17 (eukaryotes) or 21 (prokaryotes) exact
Here, we present a combined neural network approach toatches in a local alignment (Nielsehal., 1996a). Redundant
the recognition of signal peptides and their cleavage sitessequences were removed using an algorithm which guarantees
using one network to recognize the cleavage site and anoth#rat no pairs of homologous sequences remain in the data set
network to distinguish between signal peptides and non-signdHobohmet al, 1992). This procedure removed 13-56% of
peptides. A similar combination of two pairs of networks hasthe sequences. The numbers of non-homologous sequences
been used with success to predict the intron splice sites remaining in the data sets are shown in Table I. Redundan
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Table I. Data and performance values

Source Data

(Number of sequences) Network architecture (window/hidden units) Performance

Signal peptides Non-secretory  C-score S-score Cleavage site Signal peptide discrimination

proteins location (correlation)
(% correct)

Human 416 251 154/2 2714 68.0 (67.9) 0.96 (0.97)
Eukaryote 1011 820 72/2 2714 70.2 0.97
E.coli 105 119 15-2/2 39/0 83.7 (85.7) 0.89 (0.92)
Gram— 266 186 112/2 19/3 79.3 0.88
Gram+ 141 64 21-2/0 19/3 67.9 0.96

Data: the number of sequences of signal peptides and non-secretory (i.e. cytoplasmic or nuclear) proteins in the data sets after redundancy reduction. The
organism groups are eukaryotes, human, Gram-negative bacteria (‘Gr&heell,and Gram-positive bacteria (‘Graf)). The human data are subsets of the
eukaryotic data and thE.coli data are subsets of the Gram-negative data. The signal anchét.mfidenzaedata are not shown in the tabMetwork

architecture the size of the input window and the number of hidden computational units (‘neurons’) in the optimal neural networks chosen for each data set.
C-score networks have asymmetrical input windoRerformancethe percentage of signal peptide sequences where the cleavage site was predicted to be at
the correct location according to the maximal value of the Y-score (see Figure 2). The ability of the method to distinguish between the signal peptides and tf
N-terminals of non-secretory proteins (based on the mean value &shere in the region between position 1 and the predicted cleavage site position) is
measured by the correlation coefficients (Mathews, 1975). Both performance values are measured on the test sets (the average of five cross-validation tests
The values given in parentheses indicate the performance for the human sequences when using networks trained on all eukaryotic dat& aodi for the
sequences when using Gram-negative networks respectively.

reduction was not applied to the signal anchor data or the The trained networks provide two different scores betwee
H.influenzaedata, since these were not used as training datazero and one for each position in an amino acid sequence. The
Neural network algorithms output from the signal peptide/non-signal peptide networks, the

The signal peptide problem was posed to the neural networkg SCO'€: can be interpreted as an estimate of the probability of
in two ways: (i) recognition of the cleavage sites against th € position belonging to the signal peptide, while the output

background of all other sequence positions and (ii) classificatio om th_e cleavage S|te/non-_cleavage site netw_qusCElseore, .
of amino acids as belonging to the signal peptide or not. In th&a1 b€ interpreted as an estimate of the probability of the position
latter case, negative examples included both the first 70 positio ing the first in the mature protein (positierd. relative to the

: : ; i eavage site).
of non-secretory proteins and the first 30 positions of the maturé If there are several-score peaks of comparable strength, the

part of secretory proteins. true cleavage site may often be found by inspectingkeore
The neural networks were feed-forward networks with zerg 1 ¢/€avage si y 0 und by inspectings

or one layer of two to 10 hidden units, trained using back-cU've In order_tc_) see which of F*@SCOVG peaks coincides t_)est

propagation (Rumelhat al.,, 1986) with a slightly modified Wit the transition from the signal peptide to the non-signal

error function. The sequence data were presented to the netwdpgPtide region. In order to formalize this and improve the predic-

using sparsely encoded moving windows (Qian and Sejnowsktlon, we have tried a number of linear and non-linear combina-

1988; Brunaletal., 1991). Symmetric and asymmetric windows ;gnﬁg:]égi rv?/},tvhnfc?xg::lilscﬂ;z 3”3;;\?;“?2%;2’? r?et}rrée;?\t/igtzsotf
of a size varying from five to 39 positions were tested. q yp 9

Based on the numbers of correctly and incorrectly predicte&ets' The best measure was the geometric average of the C-score

positive and negative examples, we calculated the correlatioﬂnd a smoothed derivative of the S-score, termed the Y-score:

coefficient (Mathews, 1975). The correlation coefficients of both e
the training and test sets were monitored during training and the Yi= \/ GdS, (1)
performance of the training cycle with the maximal test setwhereA,S is the difference between the averagscore ofd
correlation was recorded for each training run. The network?)ositions before and position after positiori:
chosen for inclusion in the WWW server have been trained unti
this cycle only. N o
The test performances have been calculated by cross-valida- AgS = d Z S —_Z S+i @
tion: each data set was divided into five approximately equal- =1 =0
sized parts and then every network run was carried out with one In Figure 2(A), examples of the values of the C-, S- and Y-
part as test data and the other four parts as training data. Tlseores are shown for a typical signal peptide with a typical
performance measures were then calculated as an average oekyavage site. The C-score has one sharp peak that corresponds
the five different data set divisions. to an abrupt change in the S-score from a high to low value.
For each of the five data sets, one signal peptide/non-sign@mong the real examples, the C-score may exhibit several peaks
peptide network architecture and one cleavage site/non-cleavaged the S-score may fluctuate. We define a cleavage site as being
site network architecture was chosen on the basis of the test sadrrectly located if the true cleavage site position corresponds
correlation coefficients. We did not pick the architecture withto the maximal Y-score (combined score).
absolutely the best performance, butinstead the smallest network For a typical non-secretory position, the values of the C-, S-
that could not be significantly improved by enlarging the inputand Y-scores are lower, as shown in Figure 2(B). We found the
window or adding more hidden units. best discriminator between signal peptides and non-secretory
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Eukaryotes

Gram-negative bacteria

Gram-positive bacteria

Fig. 1. Sequence logos (Schneider and Stephens, 1990) of signal peptides, aligned by their cleavage sites. The total height of the stack of letters at each
position shows the amount of information, while the relative height of each letter shows the relative abundance of the corresponding amino acid. The
information is defined as the difference between the maximal and actual entropy (Shannon);1:948);,, — H; = 109,20 + =, n(a)/N; log, mj(a)/N;,

wheren;(a) is the number of occurrences of the amino axidndN; is the total number of letters (occupied positions) at posifidrositively and negatively
charged residues are shown in blue and red respectively, while uncharged polar residues are green and hydrophobic residues are black.

proteins to be the average of the S-score in the predicted signal score problem is best solved by networks with asymmet

peptide region, i.e. from position 1 to the position immediatelywindows, i.e. windows including more positions upstream than

before the position where the Y-score has a maximal value. Iflownstream of the cleavage site. This corresponds well with

this value—the mean S-score—is greater than 0.5, we predi¢he location of the cleavage site pattern information which is

the sequence in question to be a signal peptide (cf. Figure 3). shown as sequence logos (Schneider and Stephens, 1990) in
The relationship between the various performance measurgsgure 1. The S-score problem, on the other hand, is best

and their development during the training process is describesblved by symmetric or approximately symmetric windows.

in detail elsewhere (Nielseet al., 1997). Although our method is able to locate cleavage sites and
) ) discriminate signal peptides from non-secretory proteins with
Results and discussion a reasonably high reliability, the accuracy of the cleavage site

The optimal network architecture and corresponding predictivéocation is lower than that reported for the original weight
performance for all the data sets are shown in Table I. The C- matrix method (von Heijne, 1986): 78% for eukaryotes an
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Fig. 2. Examples of network output. The values of the C- (output from
cleavage site networks), S- (output from signal peptide networks) and
Y-scores (combined cleavage site scofg= VCiAS) are shown for each
position in the sequence. The C- and S-scores are averages over five

networks trained on different parts of the data. Note: the C- and Y-scores

are high for the position immediately after the cleavage site, i.e. the first

Fig. 4. Distribution of the mean signal peptide score (S-score) for all the
predictedH.influenzaecoding sequences. The mean S-score is calculated
using networks trained on the Gram-negative data set. The bin size of the
distribution is 0.02. The arrow shows the optimal cut-off for predicting a
cleavable signal peptide. The predicted number of secretory proteins in
H.influenzagcorresponding to the area under the curve to the right of the

position in the mature protein. (A) A successfully predicted signal peptide.
The true cleavage site is marked wih an arrow. (B) A non-secretory protein.
For many non-secretory proteins, all three scores are very low throughout
the sequence. In this example, there are peaks of the C- and S-scores, but
the sequence is still easily classified as non-secretory, since the C-score
peak occurs far away from the S-score decline and the region of the high
S-score is far too short.

arrow) is 330 out of 1680 (20%).

and therefore did not provide the possibility of calculating the
combined Y-score.

Note that the prediction performances reported here corre-
spond to minimal values. The test sets in the cross-validation
have a very low sequence similarity; in fact, the sequence

20 T ; similarity is so low that the correct cleavage sites cannot be
18 | Non-seorciey motsine — {  found by alignment (Nielseet al, 1996a). This means that
16| Signal anchors - the prediction accuracy on sequences with some similarity to
ul the sequences in the data sets will in general be higher.
= The differences between the signal peptides from different
S 12F organisms are apparent from Figure 1. The signal peptides
e 10 from Gram-positive bacteria are considerably longer than those
;7 gl of other organisms, with much more extended h-regions, as
v 6l observed previously (von Heijne and Abralims&989). The
] prokaryotic h-regions are dominated by Leu (L) and Ala (A)
4 in approximately equal proportions and in the eukaryotes they
25 are dominated by Leu with some occurrence of Val (V), Ala,
ol R - Phe (F) and lle (I). Close to the cleavage site, the

01 02 03 04 05 06 07 08 09 1

Mean S score (=3,-1) rule is clearly visible for all three data sets, but

while a number of different amino acids are accepted in the
eukaryotes, the prokaryotes accept alanine almost exclusively
proteins’ refer to the N-terminal parts of cytoplasmic or nuclear proteins n the-se two positions. In the first few pOS]tIOﬂS of the mature
while ‘signal anchors’ are the N-terminal parts of type Il membrane ' protein (do,WﬂStream of the cleavage _SIte) the prokaryotes
proteins. The mean S-score of a sequence is the average of the S-score oV@OW certain preferences for Ala, negatively charged (D or E)
all positions in the predicted signal peptide region (i.e. from the N-terminal amino acids, and hydroxy amino acids (S or T), while no
tQ the positiqn i_mm_edie_ttely before the maximum of the Y-score). The bin pattern can be seen for the eukaryotes' In the leftmost part of
size of the distribution is 0.02. the alignment, the positively charged residue Lys (K) [and to

a smaller extent Arg (R)] is seen in the prokaryotes, while the
89% for prokaryotes (not divided into Gram-positive andeukaryotes show a somewhat weaker occurrence of Arg (barely
-negative). When the original weight matrix is applied to our  visible in the figure) and almost no Lys. This corresponds well
recent data set, however, the performance is much lower. Thisith the hypothesis that positive residues are required in
suggests a larger variation in the examples of the signal the n-region where the N-terminal Met is formulated for
peptides found since then. It may, of course, also reflect grokaryotes, but not necessarily for eukaryotes where the
higher occurrence of errors in our automatically selected data N-terminal Met in itself carries a positive charge
than in the manually selected 1986 set. (von Heijne, 1985).

In order to compare the strength of the neural network The difference in structure is reflected in the performance:
approach to the weight matrix method, we recalculated newf the trained neural networks (see Table ). Gram-negative
weight matrices from our new data and tested the performances  cleavage sites have the strongest pattern—i.e. the higt
of these (results not shown). The weight matrix method wasnformation content—and, consequently, they are the easiest
comparable to the neural networks when calculating the C-  to predict, both at the single-position and at the sequence lev:
score, but was practically unable to solve the S-score problemhe eukaryotic cleavage sites are significantly more difficult

Fig. 3. Distribution of the mean signal peptide score (S-score) for signal
peptides and non-signal peptides (eukaryotic data only). ‘Non-secretory
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to predict. Gram-positive cleavage sites are slightly more are applied together, leaving only ‘typical’ signal peptides, we
difficult to predict than the eukaryotic ones, which would notobtain 188 sequences (11%).

be expected from the sequence logos (Figure 1), since they Some of the sequences predicted to be signal peptic
show nearly as high an information content as the Gramaccording to the S-score but not according to the Y-score may
negative cleavage sites, but the longer Gram-positive signal  be signal anchor-like sequences of type Il (single-spannin
peptides means that the cleavage sites have to be locatedtype IV (multispanning) membrane proteins. This hypothesis
against a larger background of non-cleavage site positions. is strengthened by a hydrophobicity analysis of the ambiguo
The discrimination of signal peptides versus non-secretorgxamples (results not shown). If we apply the slightly higher
proteins, on the other hand, is better for the eukaryotes than cut-off optimized for the discrimination of signal anchors
for the prokaryotes. This may be due to the more characteristigersus signal peptides in eukaryotes (0.62) to the mean S-
leucine-rich h-regions of the eukaryotic signal peptides. score, the estimate is lowered from 20 to 15%.

The logos for the human ari€lcoli data sets are not shown,  On the other hand, some of the sequences predicted to be
since they show no significant differences from those of the  signal peptides according to the maximal Y-score but not th
eukaryotes or Gram-negative bacteria respectively. Accordmean S-score may be the effect of the initiation codon of the
ingly, the predictive performance was not improved by training  predicted coding region having been placed too far upstrean
the networks on single-species data sets. On the contrary, tte this case, the apparent signal peptide becomes too long and
E.coli signal peptides are predicted even better by the Gram-  the region between the false and the true initiation codon wi
negative networks than by tHe.coli networks (probably due probably not have signal peptide character, thereby bringing
to the relatively small size of th&.coli data set). In other  the mean S-score of the erroneously extended signal peptide
words, we have found no evidence for species-specific featureegion below the cut-off. This is strengthened by the finding
of the signal peptides of humans aRccoli. that these ambiguous examples are longer than average and

Signal anchors often have sites similar to signal peptidesontain more methionines.
cleavage sites after their hydrophobic (transmembrane) region. In conclusion, we estimate that 15-20%imflubazae
Therefore, a prediction method can easily be expected tproteins are secretory. However, a whole-genome analysis like
mistake signal anchors for peptides. In Figure 3, the distribution  this would be more reliable if combined with other analyses
of the mean S-score for the 97 eukaryotic signal anchors iaotably transmembrane segment predictions and initiation site
included. It shows some overlap with the signal peptide predictions.
distribution. If the standard cut-off of 0.5 is applied to the - :
signal anchor data sets, 50% of the eukaryotic signal ancho'\(leth?q and data.pl{bllcly avallgble ) i i
sequences are falsely predicted as signal peptides (the corrddie finished prediction method is available bpth via an e—m_all
ponding figure for the human signal anchors is 75% wherf€"ver and a WWW server. Users may submit their own amino
using human networks and 68% when using eukaryotic neti¢id sequences in order to predict whether the sequence is a
works). With a cut-off optimized for signal anchor versus Sign@l peptide and, if so, where it will be cleaved. We
signal peptide discrimination (0.62), we were able to lower'€commend that only the N-terminal part (say 50-70 amino
this error rate to 45% for the eukaryotic data set. The meafcids) of the sequences is submitted, so that th_e_lnterpretanon
S-score still gives a better separation than the maximal C- o?f the output is not obscured by false positives further
Y-score, which indicates that the pseudo-cleavage sites are f#PWnstream in the protein.
fact rather strong. The user is asked to choose .bletween the netvyork ensembles

However, the pseudo-cleavage sites often occur further frorffained on data from Gram-positive, Gram-negative or eukary-
the N-terminal than genuine cleavage sites do. If we do noftic organisms. We did not include the networks trained on
accept signal peptides longer than 35 residues (this will excludi® Single-species data sets in the servers, since these did not
only 2.2% of the eukaryotic signal peptides in our data set)mprove the performance.
the percentage of false positives among the signal anchors The values of the C-, S- and Y-scores are returned for every
drops to 28% for the eukaryotic and 32% for the human signaIPOS't'on in th_e submitted sequence. In addition, the maxm_wal
anchors (39% when using eukaryotic networks). When takin(%;score' maximal S-score and mean S-score values are given
this into account, our method does provide a reasonably go r the entire sequence and compared with the appropriate cut-

discrimination between signal peptides and signal anchor®ffs: If the sequence is predicted to be a signal peptide, the
This has not been reported by any of the earlier publishe osition with the maximal Y-score is mentioned as the most

methods for signal peptide recognition. Ikely cleavage site. A graphical plot in postscript format,
, o similar to those in Figure 2, may be requested from the servers.
Scanning the Haemophilus influenzae genome We strongly recommend that a graphical plot is always used

We have applied the prediction method with networks trainedor the interpretation of the output. The plot may give hints

on the Gram-negative data set to all the amino acid sequences  about, for example, multiple cleavage sites or erroneou

of the predicted coding regions in tiaemophilus influenzae assigned initiation, which would not be found when using only

genome. The distribution of the mean S-score (from position the maximal or mean score values.

1 to the position with a maximal Y-score) is shown in Figure 4. The address of the mail server is signalp@cbs.dtu.dk. For
When applying the optimal cut-off value found for the detailed instructions, send a mail containing the word ‘help’

Gram-negative data set, we obtained a crude estimate ahly. The WWW server is accessible via the Center for

the number of sequences with cleavable signal peptides in Biological Sequence Analysis homepage at http:

H.influenzae 330 out of 1680 sequences or approximatelywww.cbs.dtu.dk/.

20%. If the maximal S-score is used instead of the mean S- All the data sets mentioned in Table | are available from a

score, the estimate comes out as 28% and with the maxim&TP server at ftp://virus.cbs.dtu.dk/pub/signalp. Retrieve the

Y-score it is 14% (distributions not shown). If all three criteria  fEBDME for detailed descriptions of the data and the format.
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The FTP server and the mail server can both be accessed
directly from the WWW server.
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