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SHORT COMMUNICATION

Identification of prokaryotic and eukaryotic signal peptides and
prediction of their cleavage sites

Henrik Nielsen, Jacob Engelbrecht1, Søren Brunak and in pre-mRNA from humans and the dicotelydoneous plant
Gunnar von Heijne2 Arabidopsis thaliana (Brunak et al., 1991; S.Hebsgaard,

P.Korning, J.Engelbrecht, P.Rouz´e and S.Brunak, submitted).
Center for Biological Sequence Analysis, Department of Chemistry, Artificial neural networks have been used for many biological
The Technical University of Denmark, DK-2800 Lyngby, Denmark and

sequence analysis problems (Hirst and Sternberg, 1992;2Department of Biochemistry, Arrhenius Laboratory, Stockholm University,
Presnell and Cohen, 1993). They have also been applied toS-106 91 Stockholm, Sweden
the twin problems of predicting signal peptides and their

1Present address: Novo Nordisk A/S, Scientific Computing, Building 9M1, cleavage sites, but until now without leading to practically
Novo Alle, DK-2880 Bagsværd, Denmark applicable prediction methods with significant improvements
We have developed a new method for the identification of in performance compared with the weight matrix method
signal peptides and their cleavage sites based on neural (Arrigo et al., 1991; Ladungaet al., 1991; Schneider and
networks trained on separate sets of prokaryotic and Wrede, 1993).
eukaryotic sequence. The method performs significantly
better than previous prediction schemes and can easily be

Materials and methodsapplied on genome-wide data sets. Discrimination between
cleaved signal peptides and uncleaved N-terminal signal- The data were taken from SWISS-PROT version 29 (Bairoch
anchor sequences is also possible, though with lower preci- and Boeckmann, 1994). The data sets were divided into
sion. Predictions can be made on a publicly available prokaryotic and eukaryotic entries and the prokaryotic data sets
WWW server. were further divided into Gram-positive eubacteria (Firmicutes)
Keywords:cleavage sites/protein sorting/secretion/signal peptide and Gram-negative eubacteria (Gracilicutes), excluding

MycoplasmaandArchaebacteria. Viral, phage and organellar
proteins were not included. In addition, two single-species
data sets were selected, a human subset of the eukaryotic dataIntroduction
and anEscherichia colisubset of the Gram-negative data.

Signal peptides control the entry of virtually all proteins to The sequence of the signal peptide and the first 30 amino
the secretory pathway, both in eukaryotes and prokaryotesacids of the mature protein from the secretory protein were
(Gierasch, 1989; von Heijne, 1990; Rapoport, 1992). They

included in the data set. The first 70 amino acids of eachcomprise the N-terminal part of the amino acid chain and are
sequence were used from the cytoplasmic and (for the eukary-cleaved off while the protein is translocated through the
otes) nuclear proteins. In addition, a set of eukaryotic signalmembrane. The common structure of signal peptides from
anchor sequences, i.e. N-terminal parts of type II membranevarious proteins is commonly described as a positively charged
proteins (von Heijne, 1988), were extracted (see Figure 1).n-region, followed by a hydrophobic h-region and a neutral

As an example of a large-scale application of the finishedbut polar c-region. The (–3,–1) rule states that the residues at
method, we used theHaemophilus influenzaeRd genome—positions23 and21 (relative to the cleavage site) must be
the first genome of a free-living organism to be completedsmall and neutral for cleavage to occur correctly (von Heijne,
(Fleischmannet al., 1995). We have downloaded the sequences1983, 1985).
of all the predicted coding regions in theH.influenzaegenomeA strong interest in the automated identification of signal
from the World Wide Web (WWW) server of the Institute forpeptides and the prediction of their cleavage sites has been
Genomic Research at http://www.tigr.org/. Only the first 60evoked not only by the huge amount of unprocessed data
positions of each sequence were analysed.available, but also by the industrial need to find more effective

We have attempted to avoid signal peptides where thevehicles for the production of proteins in recombinant systems.
cleavage sites are not experimentally determined, but we areThe most widely used method for predicting the location of
not able to eliminate them completely, since many databasethe cleavage site is a weight matrix which was published in
entries simply lack information about the quality of the1986 (von Heijne, 1986). This method is also useful for
evidence. The details of the data selection are described in thediscriminating between signal peptides and non-signal peptides
WWW server and in an earlier paper (Nielsenet al., 1996a).by using the maximum cleavage site score. The original

Redundancy in the data sets was avoided by excluding pairsmatrices are commonly used today, even though the amount
of sequences which were functionally homologous, i.e. thoseof signal peptide data available has increased since 1986 by a
that had more than 17 (eukaryotes) or 21 (prokaryotes) exactfactor of 5–10.
matches in a local alignment (Nielsenet al., 1996a). RedundantHere, we present a combined neural network approach to
sequences were removed using an algorithm which guaranteesthe recognition of signal peptides and their cleavage sites,
that no pairs of homologous sequences remain in the data setusing one network to recognize the cleavage site and another
(Hobohm et al., 1992). This procedure removed 13–56% ofnetwork to distinguish between signal peptides and non-signal
the sequences. The numbers of non-homologous sequencespeptides. A similar combination of two pairs of networks has

been used with success to predict the intron splice sites remaining in the data sets are shown in Table I. Redundancy
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Table I. Data and performance values

Source Data

(Number of sequences) Network architecture (window/hidden units) Performance

Signal peptides Non-secretory C-score S-score Cleavage site Signal peptide discrimination
proteins location (correlation)

(% correct)

Human 416 251 1514/2 27 / 4 68.0 (67.9) 0.96 (0.97)
Eukaryote 1011 820 1712/2 27 / 4 70.2 0.97
E.coli 105 119 1512/2 39 / 0 83.7 (85.7) 0.89 (0.92)
Gram– 266 186 1112/2 19 / 3 79.3 0.88
Gram1 141 64 2112/0 19 / 3 67.9 0.96

Data: the number of sequences of signal peptides and non-secretory (i.e. cytoplasmic or nuclear) proteins in the data sets after redundancy reduction. The
organism groups are eukaryotes, human, Gram-negative bacteria (‘Gram–’),E.coli and Gram-positive bacteria (‘Gram1’). The human data are subsets of the
eukaryotic data and theE.coli data are subsets of the Gram-negative data. The signal anchor andH.influenzaedata are not shown in the table.Network
architecture: the size of the input window and the number of hidden computational units (‘neurons’) in the optimal neural networks chosen for each data set.
C-score networks have asymmetrical input windows.Performance: the percentage of signal peptide sequences where the cleavage site was predicted to be at
the correct location according to the maximal value of the Y-score (see Figure 2). The ability of the method to distinguish between the signal peptides and the
N-terminals of non-secretory proteins (based on the mean value of theS-score in the region between position 1 and the predicted cleavage site position) is
measured by the correlation coefficients (Mathews, 1975). Both performance values are measured on the test sets (the average of five cross-validation tests).
The values given in parentheses indicate the performance for the human sequences when using networks trained on all eukaryotic data and for theE.coli
sequences when using Gram-negative networks respectively.

reduction was not applied to the signal anchor data or the The trained networks provide two different scores between
zero and one for each position in an amino acid sequence. TheH.influenzaedata, since these were not used as training data.
output from the signal peptide/non-signal peptide networks, theNeural network algorithms
S-score, can be interpreted as an estimate of the probability ofThe signal peptide problem was posed to the neural networks
the position belonging to the signal peptide, while the outputin two ways: (i) recognition of the cleavage sites against the
from the cleavage site/non-cleavage site networks, theC-score,background of all other sequence positions and (ii) classification
can be interpreted as an estimate of the probability of the positionof amino acids as belonging to the signal peptide or not. In the
being the first in the mature protein (position11 relative to thelatter case, negative examples included both the first 70 positions
cleavage site).of non-secretory proteins and the first 30 positions of the mature

If there are severalC-score peaks of comparable strength, thepart of secretory proteins.
true cleavage site may often be found by inspecting theS-scoreThe neural networks were feed-forward networks with zero
curve in order to see which of theC-score peaks coincides bestor one layer of two to 10 hidden units, trained using back-
with the transition from the signal peptide to the non-signalpropagation (Rumelhartet al., 1986) with a slightly modified
peptide region. In order to formalize this and improve the predic-error function. The sequence data were presented to the network
tion, we have tried a number of linear and non-linear combina-using sparsely encoded moving windows (Qian and Sejnowski,
tions of the raw network scores and evaluated the percentage of1988; Brunaket al., 1991). Symmetric and asymmetric windows
sequences with correctly placed cleavage sites in the five testof a size varying from five to 39 positions were tested.
sets. The best measure was the geometric average of the C-scoreBased on the numbers of correctly and incorrectly predicted
and a smoothed derivative of the S-score, termed the Y-score:positive and negative examples, we calculated the correlation

coefficient (Mathews, 1975). The correlation coefficients of both
Yi 5 √ Ci∆dSi, (1)the training and test sets were monitored during training and the

performance of the training cycle with the maximal test setwhere∆dSi is the difference between the averageS-score ofd
correlation was recorded for each training run. The networkspositions before andd position after positioni:
chosen for inclusion in the WWW server have been trained until

1this cycle only.
∆dSi 5 Σ

d

j 5 1

Si–j –Σ
d–1

j 5 0

Si1j (2)The test performances have been calculated by cross-valida- ( )dtion: each data set was divided into five approximately equal-
sized parts and then every network run was carried out with one In Figure 2(A), examples of the values of the C-, S- and Y-
part as test data and the other four parts as training data. Thescores are shown for a typical signal peptide with a typical
performance measures were then calculated as an average overcleavage site. The C-score has one sharp peak that corresponds
the five different data set divisions. to an abrupt change in the S-score from a high to low value.

For each of the five data sets, one signal peptide/non-signalAmong the real examples, the C-score may exhibit several peaks
peptide network architecture and one cleavage site/non-cleavageand the S-score may fluctuate. We define a cleavage site as being
site network architecture was chosen on the basis of the test setcorrectly located if the true cleavage site position corresponds
correlation coefficients. We did not pick the architecture withto the maximal Y-score (combined score).
absolutely thebestperformance,but instead thesmallestnetworkFor a typical non-secretory position, the values of the C-, S-
that could not be significantly improved by enlarging the inputand Y-scores are lower, as shown in Figure 2(B). We found the

best discriminator between signal peptides and non-secretorywindow or adding more hidden units.

2



Identification of prokaryotic and eukaryotic signal peptides

Fig. 1. Sequence logos (Schneider and Stephens, 1990) of signal peptides, aligned by their cleavage sites. The total height of the stack of letters at each
position shows the amount of information, while the relative height of each letter shows the relative abundance of the corresponding amino acid. The
information is defined as the difference between the maximal and actual entropy (Shannon, 1948):Ij 5 Hmax 2 Hj 5 log220 1 Σα nj(α)/Nj log2 nj(α)/Nj,
wherenj(α) is the number of occurrences of the amino acidα andNj is the total number of letters (occupied positions) at positionj. Positively and negatively
charged residues are shown in blue and red respectively, while uncharged polar residues are green and hydrophobic residues are black.

proteins to be the average of the S-score in the predicted signal score problem is best solved by networks with asymmetric
peptide region, i.e. from position 1 to the position immediatelywindows, i.e. windows including more positions upstream than
before the position where the Y-score has a maximal value. Ifdownstream of the cleavage site. This corresponds well with
this value—the mean S-score—is greater than 0.5, we predictthe location of the cleavage site pattern information which is
the sequence in question to be a signal peptide (cf. Figure 3). shown as sequence logos (Schneider and Stephens, 1990) in

The relationship between the various performance measuresFigure 1. The S-score problem, on the other hand, is best
and their development during the training process is describedsolved by symmetric or approximately symmetric windows.
in detail elsewhere (Nielsenet al., 1997). Although our method is able to locate cleavage sites and

discriminate signal peptides from non-secretory proteins with
Results and discussion a reasonably high reliability, the accuracy of the cleavage site

location is lower than that reported for the original weightThe optimal network architecture and corresponding predictive
performance for all the data sets are shown in Table I. The C- matrix method (von Heijne, 1986): 78% for eukaryotes and
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Fig. 2. Examples of network output. The values of the C- (output from Fig. 4. Distribution of the mean signal peptide score (S-score) for all the
cleavage site networks), S- (output from signal peptide networks) and predictedH.influenzaecoding sequences. The mean S-score is calculated
Y-scores (combined cleavage site score,Yk 5 √Ci∆dSi) are shown for each using networks trained on the Gram-negative data set. The bin size of the
position in the sequence. The C- and S-scores are averages over five distribution is 0.02. The arrow shows the optimal cut-off for predicting a
networks trained on different parts of the data. Note: the C- and Y-scores cleavable signal peptide. The predicted number of secretory proteins in
are high for the position immediately after the cleavage site, i.e. the first H.influenzae(corresponding to the area under the curve to the right of the
position in the mature protein. (A) A successfully predicted signal peptide. arrow) is 330 out of 1680 (20%).
The true cleavage site is marked wih an arrow. (B) A non-secretory protein.
For many non-secretory proteins, all three scores are very low throughout

and therefore did not provide the possibility of calculating thethe sequence. In this example, there are peaks of the C- and S-scores, but
combined Y-score.the sequence is still easily classified as non-secretory, since the C-score

peak occurs far away from the S-score decline and the region of the high Note that the prediction performances reported here corre-
S-score is far too short. spond to minimal values. The test sets in the cross-validation

have a very low sequence similarity; in fact, the sequence
similarity is so low that the correct cleavage sites cannot be
found by alignment (Nielsenet al., 1996a). This means that
the prediction accuracy on sequences with some similarity to
the sequences in the data sets will in general be higher.

The differences between the signal peptides from different
organisms are apparent from Figure 1. The signal peptides
from Gram-positive bacteria are considerably longer than those
of other organisms, with much more extended h-regions, as
observed previously (von Heijne and Abrahmse´n, 1989). The
prokaryotic h-regions are dominated by Leu (L) and Ala (A)
in approximately equal proportions and in the eukaryotes they
are dominated by Leu with some occurrence of Val (V), Ala,
Phe (F) and Ile (I). Close to the cleavage site, the
(–3,–1) rule is clearly visible for all three data sets, but
while a number of different amino acids are accepted in the

Fig. 3. Distribution of the mean signal peptide score (S-score) for signal eukaryotes, the prokaryotes accept alanine almost exclusively
peptides and non-signal peptides (eukaryotic data only). ‘Non-secretory in these two positions. In the first few positions of the mature
proteins’ refer to the N-terminal parts of cytoplasmic or nuclear proteins, protein (downstream of the cleavage site) the prokaryoteswhile ‘signal anchors’ are the N-terminal parts of type II membrane

show certain preferences for Ala, negatively charged (D or E)proteins. The mean S-score of a sequence is the average of the S-score over
all positions in the predicted signal peptide region (i.e. from the N-terminal amino acids, and hydroxy amino acids (S or T), while no
to the position immediately before the maximum of the Y-score). The bin pattern can be seen for the eukaryotes. In the leftmost part of
size of the distribution is 0.02. the alignment, the positively charged residue Lys (K) [and to

a smaller extent Arg (R)] is seen in the prokaryotes, while the
eukaryotes show a somewhat weaker occurrence of Arg (barely89% for prokaryotes (not divided into Gram-positive and

-negative). When the original weight matrix is applied to our visible in the figure) and almost no Lys. This corresponds well
with the hypothesis that positive residues are required inrecent data set, however, the performance is much lower. This

suggests a larger variation in the examples of the signal the n-region where the N-terminal Met is formulated for
prokaryotes, but not necessarily for eukaryotes where thepeptides found since then. It may, of course, also reflect a

higher occurrence of errors in our automatically selected data N-terminal Met in itself carries a positive charge
(von Heijne, 1985).than in the manually selected 1986 set.

In order to compare the strength of the neural network The difference in structure is reflected in the performances
of the trained neural networks (see Table I). Gram-negativeapproach to the weight matrix method, we recalculated new

weight matrices from our new data and tested the performances cleavage sites have the strongest pattern—i.e. the highest
information content—and, consequently, they are the easiestof these (results not shown). The weight matrix method was

comparable to the neural networks when calculating the C- to predict, both at the single-position and at the sequence level.
The eukaryotic cleavage sites are significantly more difficultscore, but was practically unable to solve the S-score problem
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to predict. Gram-positive cleavage sites are slightly more are applied together, leaving only ‘typical’ signal peptides, we
obtain 188 sequences (11%).difficult to predict than the eukaryotic ones, which would not

be expected from the sequence logos (Figure 1), since they Some of the sequences predicted to be signal peptides
according to the S-score but not according to the Y-score mayshow nearly as high an information content as the Gram-

negative cleavage sites, but the longer Gram-positive signal be signal anchor-like sequences of type II (single-spanning)
or type IV (multispanning) membrane proteins. This hypothesispeptides means that the cleavage sites have to be located

against a larger background of non-cleavage site positions. is strengthened by a hydrophobicity analysis of the ambiguous
examples (results not shown). If we apply the slightly higherThe discrimination of signal peptides versus non-secretory

proteins, on the other hand, is better for the eukaryotes than cut-off optimized for the discrimination of signal anchors
versus signal peptides in eukaryotes (0.62) to the mean S-for the prokaryotes. This may be due to the more characteristic

leucine-rich h-regions of the eukaryotic signal peptides. score, the estimate is lowered from 20 to 15%.
On the other hand, some of the sequences predicted to beThe logos for the human andE.coli data sets are not shown,

since they show no significant differences from those of the signal peptides according to the maximal Y-score but not the
mean S-score may be the effect of the initiation codon of theeukaryotes or Gram-negative bacteria respectively. Accord-

ingly, the predictive performance was not improved by training predicted coding region having been placed too far upstream.
In this case, the apparent signal peptide becomes too long andthe networks on single-species data sets. On the contrary, the

E.coli signal peptides are predicted even better by the Gram- the region between the false and the true initiation codon will
probably not have signal peptide character, thereby bringingnegative networks than by theE.coli networks (probably due

to the relatively small size of theE.coli data set). In other the mean S-score of the erroneously extended signal peptide
region below the cut-off. This is strengthened by the findingwords, we have found no evidence for species-specific features

of the signal peptides of humans andE.coli. that these ambiguous examples are longer than average and
contain more methionines.Signal anchors often have sites similar to signal peptide

cleavage sites after their hydrophobic (transmembrane) region. In conclusion, we estimate that 15–20% of theH.influenzae
proteins are secretory. However, a whole-genome analysis likeTherefore, a prediction method can easily be expected to

mistake signal anchors for peptides. In Figure 3, the distribution this would be more reliable if combined with other analyses,
notably transmembrane segment predictions and initiation siteof the mean S-score for the 97 eukaryotic signal anchors is

included. It shows some overlap with the signal peptide predictions.
distribution. If the standard cut-off of 0.5 is applied to the Method and data publicly available
signal anchor data sets, 50% of the eukaryotic signal anchor

The finished prediction method is available both via an e-mailsequences are falsely predicted as signal peptides (the corres-
server and a WWW server. Users may submit their own aminoponding figure for the human signal anchors is 75% when
acid sequences in order to predict whether the sequence is ausing human networks and 68% when using eukaryotic net-
signal peptide and, if so, where it will be cleaved. Weworks). With a cut-off optimized for signal anchor versus
recommend that only the N-terminal part (say 50–70 aminosignal peptide discrimination (0.62), we were able to lower
acids) of the sequences is submitted, so that the interpretationthis error rate to 45% for the eukaryotic data set. The mean
of the output is not obscured by false positives furtherS-score still gives a better separation than the maximal C- or
downstream in the protein.Y-score, which indicates that the pseudo-cleavage sites are in

The user is asked to choose between the network ensemblesfact rather strong.
trained on data from Gram-positive, Gram-negative or eukary-However, the pseudo-cleavage sites often occur further from
otic organisms. We did not include the networks trained onthe N-terminal than genuine cleavage sites do. If we do not
the single-species data sets in the servers, since these did notaccept signal peptides longer than 35 residues (this will exclude
improve the performance.only 2.2% of the eukaryotic signal peptides in our data set),

The values of the C-, S- and Y-scores are returned for everythe percentage of false positives among the signal anchors
position in the submitted sequence. In addition, the maximaldrops to 28% for the eukaryotic and 32% for the human signal
Y-score, maximal S-score and mean S-score values are givenanchors (39% when using eukaryotic networks). When taking
for the entire sequence and compared with the appropriate cut-this into account, our method does provide a reasonably good
offs. If the sequence is predicted to be a signal peptide, thediscrimination between signal peptides and signal anchors.
position with the maximal Y-score is mentioned as the mostThis has not been reported by any of the earlier published
likely cleavage site. A graphical plot in postscript format,methods for signal peptide recognition.
similar to those in Figure 2, may be requested from the servers.

Scanning the Haemophilus influenzae genome We strongly recommend that a graphical plot is always used
for the interpretation of the output. The plot may give hintsWe have applied the prediction method with networks trained

on the Gram-negative data set to all the amino acid sequences about, for example, multiple cleavage sites or erroneously
assigned initiation, which would not be found when using onlyof the predicted coding regions in theHaemophilus influenzae

genome. The distribution of the mean S-score (from position the maximal or mean score values.
The address of the mail server is signalp@cbs.dtu.dk. For1 to the position with a maximal Y-score) is shown in Figure 4.

When applying the optimal cut-off value found for the detailed instructions, send a mail containing the word ‘help’
only. The WWW server is accessible via the Center forGram-negative data set, we obtained a crude estimate of

the number of sequences with cleavable signal peptides in Biological Sequence Analysis homepage at http://
www.cbs.dtu.dk/.H.influenzae: 330 out of 1680 sequences or approximately

20%. If the maximal S-score is used instead of the mean S- All the data sets mentioned in Table I are available from an
FTP server at ftp://virus.cbs.dtu.dk/pub/signalp. Retrieve thescore, the estimate comes out as 28% and with the maximal

Y-score it is 14% (distributions not shown). If all three criteria fileREADME for detailed descriptions of the data and the format.
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The FTP server and the mail server can both be accessed
directly from the WWW server.
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