Prediction of the quality of protein models using
neural networks

Bjorn Wallner *

Supervisor: Arne Elofsson, Stockholm Bioinformatics Center,Stockholm University

Examiner: Olle Edholm, Theoretical Physics, Royal Institute of Technology

June 19, 2001

*Stockholm Bioinformatics Center, Stockholm University, SE-106 91 Stockholm, Sweden
E-mail: bjorn@sbc.su.se



Abstract

Models of proteins are made to help our understanding of how a par-
ticular protein functions. However, no good predictor of the quality of
the model exist. To address this problem neural networks are trained to
predict quality of protein models. Besides, the possibility to measure the
quality of a model, this might also be useful to increase the specificity of
fold-recognition methods.

Here we generate a large set of models, using alignment methods and
the homology model program Modeller [25]. The quality of these models
were measured using a modified version of the LGscore [21].

The training was based on accessibility surfaces, the contacts between
residues and contacts between 13 different atom types. The training was
performed for different cutoffs. For the atom type contacts, networks
were trained on ten cutoffs ranging from 3.0 A to 5.25 A in 0.25 A inter-
vals, the contacts with atoms in the same residue were omitted. For the
residue contacts six cutoffs in the range 4 A to 12 A were used, only con-
tacts between residues more than five residues apart in the sequence were
counted, to avoid accumulation of contacts between residues laying close
in the sequence. The accessibility surfaces were represented as fraction
of <25%, 25%-50%, 50%-75% and >75% relative accessibility for each
residue respectively.

A neural network was trained for every single combination of param-
eter type and a correlation coefficient for an independent test set was
calculated as a measure of how good each network performed. For the
atom contacts alone the best correlation, 0.70, was obtained with a 4.5
A cutoff, for the residue contacts cutoff of 6 A gave the best correlation,
0.63. For the accessibility surfaces high and low relative accessibility gave
best correlation with 0.70 for low and 0.52 for high.

The different parameter types probably contain overlapping informa-
tion, nevertheless if a network is trained on a combination of the best atom
and residue contacts together with the accessibility surfaces a correlation
coefficient of 0.83 is obtained. However on an additional test set generated
from LiveBench-2 [39] data, this high performance is not sustained, the
correlation coefficient for this set was only 0.50.
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1 INTRODUCTION

1 Introduction

The genome projects produce a growing number of protein sequences with un-
known structure and function. To experimentally determine the structure and
function of a protein is both difficult and time—consuming, thus the need for
computer—aided sequences analysis is large.

The prediction of the three-dimensional structure of a protein only from
the amino acid sequence has been a problem of major interest for many years.
Approaches have ranged from purely ab—initio methods that are based entirely
on physical chemical principles, to homology methods that are based primarily
on the information available in sequence and structural databases. [1]

Homology modelling has recently assumed an increased importance in the era
of structural genomics. One long—term goal of high—throughput experimental
structure determination is to obtain enough protein structures so that the rest
can be reliably predicted using homology methods. Homology modelling usually
follows the steps outlined in figure 1.

The first step in homology modelling of an unknown protein is to search
databases like, Protein Data Bank' [2], SCOP? [3], FSSP? [4] or CATH* [5]

'http://www.rcsb.org/pdb/

2http:/ /scop.mre-lmb.cam.ac.uk/scop/
3http://www2.ebi.ac.uk/dali/fssp.html
4http://www.biochem.ucl.ac.uk/bsm/cath/

p Finding templates

:—-| Aligning target and template ‘

Produce model

Evaluate model

Figure 1: Steps in homology modelling of protein structure. First databases are
searched for related structures, which can act as templates for the target sequence.
The selected templates are aligned against the target sequence. Models are built based
on the information in the template structure and the alignment. The quality of the
model is assessed. Process might continue to produce better models.
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for homologous proteins with known structure, which can be used as templates.
There are three main classes of protein comparison methods that are useful in
finding related proteins. The first is by pairwise sequence alignment, which is
the classical way to detect related proteins. Frequently used programs in this
class are FASTA [6] and BLAST [7]. The second class uses multiple sequence
comparisons to improve the sensitivity of the search. A widely used program in
this class is PSI-BLAST [8]. The third class are threading methods [9]. These
methods involve the identification of a structural template that most closely
resembles the structure of a query sequence, by “threading” the query sequence
through a known structure and calculating some score based on the fit. Since
3D structure in general is more conserved than sequence, threading methods
are useful when there are no proteins clearly related to the target sequence on
the sequence level. [10]

When templates are found and alignments are determined there are a num-
ber of modelling building programs available, that can be used to construct
a 3D model. The accuracies of the various programs seems to be relatively
similar when used optimally [11, 12]. The template selection and alignment
accuracy is usually of greater importance than the modelling program used for
modelling, especially for models based on less than 40% sequence identity to
the templates. [10]

Once a 3D model is determined the quality of the model must be determined
in some way, in order to get some estimation if the model is good or bad and
if the alignments needs to be changed and a new model produced. What is
needed is some kind of discriminatory function. These functions can be simple,
for example, counting atomic contacts in a given structure [13], or can involve
elaborate calculations based on the physics of the system to determine the free
energy of a conformation [14].

The physics based discriminatory functions, assumes that the correct native
protein fold is at a global free—energy minimum [15]. Even if this is the case, it
is not very helpful in devising a discrimination function, since the free energy is
not a simple function of atomic coordinates, but also depends on the extent of
motion and degree of order. Levitt and co—workers [16, 17] have tested a number
of energy functions and found none of them to be completely satisfactory in
discriminating incorrect from native structure. What they did found, was that
simple functions often have as effective discriminating power as more complex
function.

Another type of discriminatory functions are knowledge—based. These func-
tions compile parameters from tendencies observed in a database of experi-
mentally determined protein structures [18]. Generally, knowledge-based dis-
criminatory functions have used a simple one— or two—point—per—residue repre-
sentation, i.e each residue in protein sequence is represented with one or two
positions in the three—dimensional space [19]. Discrimination can be based on
each residue’s preference to be buried or exposed, its preference to be in con-
tact at a particular distance and sequence separation from other residues and
its preference to be in a certain secondary structure conformation [20]. But in
order to be able to discriminate between quite similar protein models (i.e 1 to
3 A root mean square deviation) a more detailed representation is necessary
which capture more details of the protein models [19]. A one—point—per—residue
discriminatory function may not be able to discriminate as well as an all-atom
discriminatory function, which takes into account the environment of all the
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atoms on the main—chain and the side—chain of each residue.

This study deals with this last step of homology modelling assessing the
quality of a protein model. This problem is more complex than just discrimina-
tion of good from bad models, since it involves an estimation of how good the
model really is.

To address this problem many homology models are produced of structural
known proteins. And a set of neural networks are trained to predict the quality,
as measured by a modified version of LGscore [21] between the models and the
correct structures, which is a measure of how similar the two structure are. The
models are represented by a number of different parameters, such as accessibility
surfaces, the contacts between residues and contacts between 13 different atom
types with different cutoffs. Besides, the possibility to measure the quality of
a model, this might also be useful to increase the specificity of fold—recognition
methods, whose aim is to identify the conformation a protein will adopt.

2 Background and Theory

2.1 Proteins

Proteins are build up by amino acids forming a peptide chain of variable length.
There exists 20 different amino acids, the general structure of the amino acid
is shown in figure 2. At one end, there is an alkaline amino group at the other
an acidic carboxyl group. The difference between the amino acids are the side
chain R, which can vary from just an hydrogen in glycine and methyl group in
alanine to long acid or aromatic groups.

Proteins play a central role in many biological processes, since they make
up the cell machinery. They are the active components which catalyse various
processes, and in that way they control and direct chemical pathways behind all
processes of the living cell. They can act as transporters, transporting oxygen
in the blood or controlling the flow of ions across the cell membrane.

The three-dimensional structure of a protein is of great importance to its
the function. The structure hierarchy is commonly divided in four levels. The
primary structure which is simply the amino acid sequence. The secondary
structure is the formation of main structural elements like helices and sheets.
When these are coupled together one gets the tertiary structure, and finally
the quaternary structure which is the term for several peptide chains bound

Figure 2: The general structure of an amino acid in non—ionized form. At one end,
there is an alkaline amino group at the other an acidic carboxyl group. The R sym-
bolizes the side chain, which differs between the different amino acids.
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together, possible also with other elements such as metals.

To understand protein function the three-dimensional structure of the pro-
tein might help, therefore intense efforts have been made to understand the
folding process.

2.2 Protein folding

Important for the folding of proteins are various interactions between the groups
of amino acids and in particular their interaction with water. It has become
clear that hydrophobicity plays a very important role in protein folding [22].
The hydrophobicity originates from the fact that water with polar properties
interact unfavorable with non—polar amino acid side groups. A protein with
both polar and non—polar groups would tend to obtain a structure where polar
groups are turned towards the water and with non—polar ones sheltered inside
the protein. This create rather compact structures.

Another crucial factor in protein folding, besides the hydrophobicity, is the
forming of hydrogen bonds. They are important for stabilizing secondary struc-
tures. In a correct structure the fraction of hydrogen bonded atoms is opti-
mized [23, 24], and in an incorrect structure one could expect this fraction to
be lower [13].

Then of course electrostatics and van der Waals interactions also contribute
to the complexity of the folding process.

2.3 Sequence alignment

Sequence alignment can be used to detect relationships between two proteins.
All alignment algorithms uses some method to score relation between to amino
acids. The simplest way to score to amino acids is by identity scoring, amino acid
pairs are classified into two types: identical and non-identical. Non-identical
pairs are scored 0 and identical are scored 1. But since the sequence is sub-
jected to evolution, which means that amino acids sequence can change, due
to substitutions, insertions and deletions, it is often more useful to use som
other scoring scheme. The substitution follow a pattern, meaning that some
amino acids are more likely to by interchanged. A change from a valine to an
isoleucine is for example more likely to be found than a valine to a histidine
change. Therefore more sophisticated scoring schemes have been developed,
which score the equivalencing of each of the 210 possible pairs of amino acids
(usually represented by a 20 x 20 matrix). To deal with the possibility of inser-
tions and deletions, the alignment are allowed to have gaps. Introducing gaps
in an alignment results in a gap—penalty on the score for the alignment.

Once the scoring scheme for amino acids and gaps is chosen, what is left is
to found the best possible alignment between two sequences, i.e the one with
the highest score. The naive approach to finding this alignment is to generate
all possible alignments, add up the scores for equivalencing each amino acid
pair and all gap penalties in each alignment and then select the highest scoring
alignment. But even for two sequences of 100 residues there are > 107® possible
alignments, which makes this approach infeasible. Fortunately, there is a group
of algorithms using dynamic programming that can calculate the best scoring
alignment in the order of mn steps, where m and n are the length of the two
sequences to be aligned.
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A way to improve alignment quality is to include information about the
predicted secondary structure, which can be predicted with an accuracy of about
75% from the amino acid sequence [26]. That is, instead of only relating the
amino acids based on residue type, they are also related based on secondary
structure.

Another way to improve detection of remotely related proteins, i.e less than
30% sequence identity, is to use multiple sequence alignment [27]. Which makes
it possible to detect a relationship between two proteins because they both
are related to a third protein. From a multiple alignment it is also possible
to produce a protein profile, which holds information on the conservation of
different residues in the proteins. This approach does not only improve detection
of remotely related proteins, it also gives a significant improvement in alignment
quality, even at levels of sequence identity for which pairwise alignment methods
are known not to work. [1]

2.4 Protein structure comparisons

There exist a number of methods to measure the similarity between a protein
model [21] and the correct structure. The more similar the model and the correct
structure are the higher quality of the model. The most common way to measure
this similarity between a model and the correct structure is to calculate the root
mean square deviation (rmsd) after an optimal superposition. The rmsd gives
a measure of the average deviation at each residue. A problem with the rmsd
measure is that it is a global measure. This means that the rmsd for model,
which is mostly correct, but with one bad region can get very high.

Other methods, like LGscore [21] avoid this problem by finding the “most
significant” segment in common between a model and the correct structure.
This segment should ideally be as long and similar as possible. In this study a
modified version of LGscore is used, the original method is modified in order to
get better statistics for short fragments. For a detailed description see Quality
measure under Methods.

2.5 SCOP

The Structural Classification of Proteins database [3], SCOP?, is a hierarchical
database, which provides a detailed description of the structural and evolu-
tionary relationships of proteins whose three—dimensional structures have been
determined. The current release (1.53) contains all 11 410 PDB entries from 1
Jul 2000. The quality of the database is very high since the classification is con-
structed manually by visual inspection and comparison of structures, but with
the assistance of tools to make the task manageable and help provide generality.

Each protein is classified on four hierarchical levels, family, superfamily,
fold and class. Proteins within a family have a clear common evolutionary
relationship. They either have residue identities of 30% and greater, or lower
sequence identity but very similar structure and function. That two families
share the same superfamily means the proteins based on their structure and
functional features might have a common evolutionary origin. Proteins with the
same fold have the same major secondary structures in the same arrangement

Shttp://scop.mrc-lmb.cam.ac.uk/scop/
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Input nodes

Figure 3: A schematic picture of a two layered neural network, with four input
variables (Xi,...,X4), three hidden nodes and two output variables (Yi,Y2). For
each connection (synapse) there is one weight, which is multiplied with the output
from the previous node, when it is transfered through the synapse to the next node.
The zoom-in shows what happens at each node. First the input to the node is summed
and a bias or a threshold is added to this sum (Z?=o X;wl;z). This sum is then passed
through a response function, which usually is a linear or a logistic function. Figure
idea from Lundstrém [28].

and with the same topological connections. Different folds are grouped into
classes like, all-a—helices, all-3—sheet or a and 3.

2.6 Artificial neural networks

The theory of neural networks is based on the actual physiology of the human
brain and show a great resemblance to the way our brain works. The building
blocks of the neural networks are neurons or nodes that are connected with
synapses, which has a weight to reinforce or repress signals. The nodes are
grouped in layers, and the nodes in one layer only take input from the previous
layer and give output to the next layer.

An example of a two layered neural network is shown in figure 3. The input
variables are transfered through the synapses to the hidden layer of hidden
nodes. A response is triggered and the result is sent to the output layer with
output nodes, where a new response is triggered resulting in the output variables.
At each node the input is summed and a bias or a threshold is added to this
sum. This sum is then passed through a response function, which usually is
linear or logistic.

A neural network is trained with a set of known input and output variables.
From these examples the network tries to generalize and learn the functionality
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between the them. The learning or training consists of adjusting the weights and
the biases in such a way that when the input variables are forwarded through the
network, the error between the network output and the desired known output
is minimized. Efficient algorithms have been developed to deal with this.
What is needed, is first an efficient way to calculate derivatives of the error
function with respect to the weights (it can be shown that the biases can be
included in the weights by adding an extra node [29], therefore biases will not be
included explicitly in the derivation) secondly a way to go from the derivatives
to the adjustments in the weights. These two methods are then repeated in
an iterative manner for each training cycle. The method for calculating the
derivatives is called error back—propagation, the term refers to the fact that
the derivatives are calculated by propagate the errors backwards through the
network. There are a number of methods to go from the derivatives to update
the weights, the method used in this study is called scaled conjugate gradients.

2.6.1 Error back—propagation

This is the algorithm for evaluating the derivatives in an efficient way. Assume
that the response function is chosen in such a way that it can be differentiable
with respect to the input variables, the weights and biases Also assume that
the chosen error function is differentiable with respect to the output variable.
Then the derivatives of the error function with respect to the weights can be
evaluated.

In a neural network at each node the following sum is calculated:

a; =) wjiz (1)
i

where z; is the response of node, which sends a connection to node j and wj; is
the weight for that connection. Summation taken over all nodes with connection
to node j. This sum is then transformed through a response function g(-) to give
the response z; of node j:

zj = 9(a;) 2)

Since there is a special case when z; is an input or an output node, z; will denote
input nodes and y; will denote output nodes. The error function E is assumed
to be a sum of errors over all patterns in the training set, of an error defined for

each pattern separately
E= Z E,
n

E, is assumed to be expressed as differentiable function of all its output variables

En = Eﬂ(yla"'ayC)

With this assumptions the derivatives with respect to the weights can be ex-
pressed as sums over the training set patterns of the derivatives for each pattern
separately. Therefore only one pattern need to be considered at a time. By ap-
plying the chain rule

6En _ 6En 6aj

(9w_7'i B 8aj 8wji

10
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define
5 = OFE,
7 6aj
using equation 1
Baj — 5
8wji o
gives
OFE,
o
811),‘,' i%i

The derivative of the error with respect to the weight is obtained simply by
multiplying the ¢ value for the node j at the output end of the weight by the
value of the response for node ¢ at the input end of the weight see figure 4a.
Left to calculate is d; for each hidden and output node. For the output node
using equation 2 with 2z denoted by y; (because of the output node).

_ OB, - Oy OE, 1

oE,
oy = dar = 3—%% = g'(ar)

Oy

3)

once the response and error function are chosen this can be easily calculated.
For the hidden nodes it is a bit more complicated because there is no explicit
error function that can be calculated for each node. By using the chain rule

_0E, <~ OE, day
% = da; zk: day, Oaj

and equation 1 and 2 gives
Bak '
a = Zwkizi = Zwkig(az’) = Ba, Zwkig (a:)
i i J i
which means that d; can be written as

5 = g'(a;) D wi;6 (4)
k

where the sum runs over all nodes k that are connected to node j. The value
of § for a particular hidden node can be obtained by propagating the § values
backwards see figure 4b. Since the § values for the output nodes are known from
equation 3, it follows that values of § for all hidden nodes can be calculated by
recursively applying equation 4.

Error back—propagation is much faster way to calculate the derivatives then
by numerically forward propagation. The numerically differentiation scale as
O(W?2), since derivative scale as O(W) and that has to be evaluated W times,
where the error back—propagation scale as O(W). This makes a huge difference
in computational time.

2.6.2 Scaled conjugate gradients

The easiest way to change the weights from the derivatives is by changing the
weights with a fixed step length in the direction of the negative gradient of the
error function, this algorithm is known as gradient descent. However it turns

11
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OEn
a) ?
oW 5
@ z— Wi @
I |
node i node j
b)

Figure 4: An illustration of how the error back—propagation algorithm works. The
top figure shows which parameters are involved in the calculation of 0F, [Owj; = §; ;.
The lower figure illustrates how the § values are calculated by propagated back through
the network, §; = 22:1 Wrj0k.

out that this method converge rather slowly and that a more elaborate method
is needed.

Scaled conjugate gradients algorithm is an improvement of gradient descent
algorithm, because it choses the direction at each training cycle, as a linear
combination of the negative current gradient and the the direction chosen in
the previous step. This is more efficient since information from former steps
is used, which is not used in the gradient descent algorithm. The step length,
which in the gradient descent algorithm is fixed, is also calculated in an efficient
way which minimizes the error in the chosen direction. For a full derivation of
the scaled conjugate gradients algorithm see [30] or [29].

2.6.3 Over—training

Even tough it is certain that the error for the training data will decrease with
the number of training cycles. It is still important to stop the training in
time because too many training cycles will result in an “over—trained” neural
network [29]. Over-training denotes the phenomenon that the network learns the
noise of the training data, when this happens the networks ability to generalize
is reduced an example is shown in figure 5. Another factor which increase the
risk of over—training is a high number of hidden nodes. Since hidden node
introduces more network variables (weights), the number of hidden nodes is
a measure of the degree of freedom in the network. A rule of thumb is that
these number of weights should not exceed the number of training examples
(input/output values) [31]. The number of hidden nodes and training cycles

12
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must be optimized in order to avoid over—training and minimize the training
time.

12

10

-6 1 1 1 1 1 1 I I I
0 1 2 3 4 5 6 7 8 9 10

Figure 5: A picture of what happens when a neural network is over—trained. The
pluses symbolize the training set and the circles the test set. The solid line represents
and optimally trained network and the dashed line shows an over—trained network.
The over—trained network performs worse on the test data than the optimally trained
network.

3 Methods

3.1 Selection of target—template pairs

To get good results it is important to use a large and broad set of related and
unrelated protein domains of high quality. This was achieved by choosing a set
of proteins that according to SCOP (version 1.39) shared the same fold [3]. The
version 1.39 of SCOP used here contained 12 805 domains. Since some of the
structures lack coordinates for some of the residues, or have other problems, all
proteins could not be used. Therefore only proteins that consisted of a contin-
uous domain with the same sequence as in the SCOP database were included,
leaving 10 306 protein domains. From these a subset of proteins representing
all families with sequence identity less than 50% were selected, leaving a total
of 1060 proteins.

All proteins sharing the same fold were aligned against each other using
ordinary sequence alignment. They were then used as target and template
for each other. Giving a total of 19 966 target—template pairs for homology
modelling.

13
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Figure 6: A protein model superimposed on its correct structure. This model had a
Q-score of 30.

3.2 Homology modelling program

The homology modelling program Modeller [25] was used for building protein
models. Modeller starts building the model by using the distance and dihedral
angle restraints on the target sequence derived from its alignment with the
template structure. Then, the spatial restraints and the CHARMMZ22 force
field terms [37], which enforce proper stereochemistry, are combined into an
objective function. The model is then generated by optimizing the objective
function in Cartesian space. It takes about 3 minutes on a standard PC work
station for Modeller to create a model from an alignment. An example of a
protein model superimposed on its correct structure is shown in figure 6.

3.3 Training and test sets

In order to train and test performance of neural networks, a training and a
test set is needed. These should be chosen carefully, it is desirable that similar
models are not present both in the training and the test set. A good result
on that test set could very well mean that the neural networks has memorized
instead of generalized. On the other hand it is also not good to have too similar
models in the training set, because this may bias the neural network to recognize
only those models. This is avoided by choosing a broad set with examples of all
different kinds of models to start with.

To avoid the possibility of a having similar models in the training and test
set, the models were split into training and test sets, in such a way that one
fold type only was present in either the training or the test set. With the
restriction that the total number of models for one fold type should not be

14
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present more than 500 times, to avoid over representation of one particular fold
in the training or the test set. Really large folds like immunoglobulin fold, were
split into training and test based on SCOP superfamily instead of fold, i.e one
superfamily from that fold were placed either in the training or the test set.

Test set consisted of 6 100 models representing 79 different folds and the
training set consisted of 7 040 models from 80 different folds.

3.3.1 LiveBench-2 test set

An additional independent test set was created from LiveBench-2 data [38, 39].
LiveBench is a benchmarking of protein structure prediction servers. Every week
newly solved protein structures, which does not show any significant similarity
to any of the proteins previously available in the structural database, are sent to
different structure prediction servers. The result from the servers are alignments
on a number of template structures. The LiveBench—2 data consisted of 203
targets and a total of 13 035 target—template pairs collected under the period
2000-04-12 to 2000-12-29 from seven prediction servers, PDB-Blast®, FFAS?,
fugue®, mgenthreader®, SAM-T99'0, foldfit'! and dali'?. Unfortunately it was
only possible to generate models for 8 334 target—template pairs, since some of
the alignments form the servers were too short or there was an inconsistency
between the alignment sequence and the coordinate file for the template.

3.4 Parameter representation of protein models

The representation of a protein model should include as much information as
possible about the structure, in order to be able to distinguish subtle differences
between models. On the other hand too much information introduce noise,
which of course is undesirable.

This section will describe the three different parameter sets, atom and residue
contacts and accessibility surfaces, used to represent a protein model in this
study.

3.4.1 Atom contacts

Different atom types are distributed nonrandomly with respect to each other in
proteins because of energetic and geometric effects. More random distributions
are expected in incorrect than in correct protein models [13]. To capture this
information contacts between 13 different heavy atom types were counted for ten
cutoffs ranging from 3.0 A to 5.25 A in 0.25 A intervals, omitting the contacts
with atoms in the same residue. The different atom types are explained in
table 1. They were chosen, among the 167 heavy atoms of the 20 amino acids,
on the basis that they should represent chemical differences, for example a
backbone carbon and a carbon bound to two oxygens are chemically different.

Shttp://bioinformatics.ljcrf.edu/pdb_blast
Thttp://bioinformatics.burnham-inst.org/FFAS
8http://www-cryst.bioc.cam.ac.uk/fugue/prfsearch.html
%http://insulin.brunel.ack.uk/psipred

10http: / /www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html

U http://www.bmm.icnet.uk/servers/3dpssm

12http:/ /www.ebi.ac.uk/dali
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Atom type | Description

C | Backbone
N | Backbone
O | Backbone

C. | Backbone
CH3 | Methyl group
CH/CH, | Carbon acid group with one or two hydrogens
C(00-) | Carbon in carbon acid group in Asp and Glu
(C)OO0- | Oxygens in carbon acid group in Asp and Glu
NH | Amino group
NH; | Amino group
=0 | Double bonded oxygen, present in the acidic amino acids Asn and Gln
OH | Hydroxyl group present in Ser, Thr and Tyr
S | Sulfur present in Cys and Met

Table 1: Description of the different atom types used.

The contacts are symmetrically, thus 91 (14 x 13/2) different contact types
can be identified. Since the number of contacts is depended on the length of
the protein, the number of contacts for each type must be normalized. This was
done simply by the total number of contacts. That is each contact type were
represented as a fraction of contacts.

3.4.2 Residue contacts

If the atom contacts describe short contacts or short—ranged forces, the residue
contacts try to describe the proteins in a more global sense. But the border be-
tween and the physics behind the residue and atom contacts is not completely
clear, except that both atom and residue contacts have information about hy-
drophobicity, electrostatics and hydrogen bonding. Perhaps the atom contacts
has more information on hydrogen bonding and the residue contacts more on
hydrophobicity.

Contacts between residues for six cutoffs, 4 A, 5 A, 6 A, 8 A, 10 A and 12 A
were counted, with the restriction that the two residues in contact had to be
more than five residues apart in the sequence. In order to avoid accumulation
of contacts laying close in sequence. The distance between two residues were
taken as the closest distance between the two residues all heavy atom included.
This means that the backbone of two residues might be far apart, but if their
side chains are close, they will still be regarded as being in contact. One could
think of other ways to define a distance between two residues, such as C,—C,
distance or the distance between the center of the two residues.

Since the residue contacts as well as the atom contacts are depending on the
length of the protein, they were normalized similarly.

As the atom contacts, the contacts between the 20 amino acids are symmet-
rical giving a total of 210 (21 x 20/2) different contact types.

3.4.3 Solvent accessibility surfaces

Hydrophopic forces is clearly one of the major forces in protein folding. Atom
and residue contacts capture some information on hydrophobicity. But since it
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is such an important factor, solvent accessibility surfaces were also included in
the parameter representation of a protein model.

The accessibility surfaces were calculated using the program Naccess'?, which
is an implementation of a method developed by Lee & Richards [41]. Briefly,
Naccess calculates the atomic accessible surface defined by rolling a probe of
with radius 1.4 A around a van der Waals surface. This probe is supposed to
describe a water molecule. The program also sums the atomic accessible sur-
face areas over each residue, and gives a relative accessibility of each residue
calculated as the percentage of accessibility surface compared to a standard ac-
cessibility surface of that particular residue, X, in an extended ALA-X-ALA
tripeptide [42]. Furthermore the residue accessibility surfaces are divided into
side chain and main chain accessibility surfaces, C,, is included in the side chain
in this description, which means that the glycine amino acid, which lack a heavy
atom side chain actually can have a side chain accessibility surface.

In this study the relative accessibility surface for the side chains were used.
It was thought that they would carry more information on hydrophicity than
the main chain, because they are more probable to stretch out into the solvent,
The accessibility surfaces were represented as fraction of relative accessibility
<25%, 256%-50%, 50%—75% and >75% for each residue respectively. Also the
fraction between total accessibility surface of non—polar and polar residues were
considered.

3.4.4 Quality measure

As a measure of protein quality a modified version of the LGscore [21] was
used. LGscore gives a score based on the most significant segment between
a model and the correct structure. The statistical significance of a segment
is calculated using a method developed by Levitt and Gerstein [34]. After a
structural superposition of the two structures a comparison score is calculated.

_ 1 _ Ngap
Satr = M (Z 1+ (dij/do)? 2 )

where M is equal to 20, d;; is the distance between residue ¢ and j, do is equal
to 5 A and Nyqp is the number of gaps in the alignment. By calculating Sy,
for a set of structural alignments of unrelated proteins a distribution of Sy,
depending on the alignment length, [, can be determined. The distribution for
Sgir follows an extreme—value distribution. From this distribution a P—value
dependent on Sy, and [ can be calculated. The P—value is the probability that
a better score would occur by chance. LGscore is the negative log of this P—value
for the most significant segment (lowest P—value).

One problem with the P—value is that the best possible P—value is depending
on the length of the protein. For a very short proteins it is not possible to
obtain a significant P—value even for a perfect model. To compensate for this
the Q-score was introduced (Fang et al unpublished results). The Q-score was
calculated from a number of models made for proteins with more than 50%
identity. For each of the models the best P—value was calculated and then this
value was fitted against the length of the proteins.

The Q-score is a better measure of protein quality than for instance the
rmsd (root mean square diviation), since it consider segments of the model and

13http://wolf.bms.umist.ac.uk /naccess/
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Figure 7: Q-score for all models used in this study plotted against 1/rmsd. For low
rmsd (i.e rmsd < 3) the Q-score is generally high, but then there also exists models
which has a high Q—score even tough their rmsd is high. These models are probably
mostly correct, but with some bad region which results in a high rmsd.

not the whole model. In this way a model which is mostly correct can get a
good Q-score, while the rmsd for the same model is very high. This is desirable
since mostly correct models can still be of interest. A model with a Q-score
above 5 is good, while a Q—score below 0 is not significant at all. In figure 7 the
Q-score is compared to rmsd. For low rmsd (rmsd < 2) the Q—score is generally
high, but then there also exists models which has a high Q-score even tough
their rmsd is high. These models are partly correct, but with some bad region
which gives a high rmsd.

3.5 Neural networks

The neural network package Netlab'* for Matlab was used in this study. It is a
two layer network, meaning that there is one hidden layer and one output layer.
The response function for the hidden nodes was a tanh function. Empirically
it has been shown that tanh response function converge faster than a logistic
function [29] and that is the reason why it is used. The response function
for the output node can be specified by the user, since the range of output is
between -20 and 40 (see figure 9) a linear response function was used, instead of
a logistic which restricts the output to values between 0 and 1. The training was
performed using error back—propagation with a sum of square error function:

N
E:M
2

where N is the number of training examples, y; the predicted value by the
neural network and ¢; the correct value. Scaled conjugate gradients was used to
minimize the error function.

14 Available at http://www.ncrg.aston.ac.uk/netlab/index.html
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The optimization of the number of hidden nodes and training cycles was
done using the same approach as Emanuelsson et al [36]. The error function,
FE, was monitored for both the training and the test set through each cycle
of the training for different number of hidden nodes. The optimal number of
training cycles is when the error for the test set stops decreasing and start to
increase. The optimal number of hidden nodes is chosen by training networks
with different number of hidden nodes and choosing the network for which the
error on the test set is minimized.

This method has been criticized, since it involves the test set in the opti-
mization and the performance might not reflect a true generalization ability.
However practical experience in bioinformatics applications has shown that the
performance on a new independent test set to be as good as that found on the
test used to stop training [40].

Networks were trained with hidden nodes in the range 0 to 40 for 2000
training cycles, and the optimal number of hidden nodes and training cycles was
5 and 1000 respectively. These parameters were sufficient for almost all networks
trained. So in order to avoid optimizition for every single network training.
The parameters were set to 5 nodes and 1000 training cycle to begin with, and
during each network training the error and the correlation with the test set was
monitored, and if the error and correlation showed no sign of overtraining, no
further optimization was performed. This opens the possibility that some other
network setting might be better, but this improvement is not likely to be that
significantly different between the different networks. Which basically means
that the default setting can be used to compare how good different networks
performs with different input parameters. Once these are found a more solid
optimization can be done, which then might improve performance slightly. This
is not certain to work for every type of neural network training, but for the case
here it did.

3.6 Evaluation of neural network performance

Neural network performance can be evaluated using the correlation coefficient
between the correct, x;, and predicted, y;, values on an independent test set.

oo L@ -Di-7)
Vi@ —7)*(yi - 7)
where T and 7 denotes the mean of x; and y; respectively. This is a value
between -1 and 1, where 1 indicates a perfect prediction and perfect linear
dependence between prediction and correct value, —1 indicates the same but an
association in the opposite direction and 0 indicates a random prediction.
Instead of predicting the quality of model one could choose to discriminate
good from bad models by choosing a cutoff value for correct prediction, all values
above the cutoff are counted as correct and all below as incorrect. Then the
normal correlation coefficient can not be used to calculate network performance.
Instead Matthews correlation coefficient, M, can be used. It is defined as:

P,N; — P; Ny
vV (Ne + Np)(N; + Pp) (P, + Ny)(P;, + Py)

where P; is the number of true positives, Py the number false positives, Ny
the number of true negatives and Ny the number of false negatives, these are

Me =
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Figure 8: Illustration of the parameters P;, P, Ny and Ny.

illustrated in figure 8. From these some other useful measures for evaluating
neural network performance can be calculated. The specificity of a prediction
that is the fraction of predictions predicted correct is defined as:

Py
Pt-}-Pf

Speci ficity =

and the sensitivity defined as the fraction of all possible correct structures found:

P

SenSZtZ’UZty = m
t !

4 Results and Discussion

To predict the quality of a protein model using neural networks, many protein
models are needed in order to produce good training data for the neural network.
To achieve this target and template structures for homology modelling were
selected from the SCOP database (release 1.39). All structures sharing the
same fold and with less than 50% sequence identity were selected as target and
template for each other. They were aligned using pairwise alignment then the
modelling program Modeller [25] was used to produce protein models from the
alignments.

The quality of these models were assessed by comparing them to their known
structure calculating the Q-score (see Methods). As shown in figure 9 the
quality for these models ranged from really bad models with Q-score less than
-10, to very good models with a Q-score above 5. This is good, since it is
desirable that the neural network learns to recognize features of both good and
bad models.
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Figure 9: Histograms over the Q-score for the training (left) and the test set (right).
Most models lie in the range -8 to 5, but there are some really good models with a
Q-score above 10. The training set contained 1 000 more models than the test test,
which is the reason for the difference in area.

4.1 Neural network training

The get some idea of which parameters and contact cutoffs that were important
for describing the quality of protein models. Neural network were trained to
predict protein quality for every single set of parameters, i.e one network for
every atom contact cutoff, one for every residue contact cutoff and and one for
every relative accessibility surfaces per residue type. The result is shown in
table 2, 3 and 4.

Atom cutoff (A) | C

3.0 0.57
3.25 0.60
3.5 0.60
3.75 0.62
4.0 0.66
4.25 0.67
4.5 0.70
4.75 0.70
5.0 0.69
5.25 0.70

Table 2: Correlation coefficient, C, between the predicted and correct value when a
neural network was trained only on atom contacts with different.

It is clearly seen that for some parameters the neural network performs
better. For the atom contacts best correlation, 0.70, was obtained for some
cutoffs in the range 4.5-5.25 A. The best correlation for the residue contacts
was 0.65 with a 6 A cutoff. This indicate that the atom contacts contains some
what more information on the protein quality than the residue contacts. It
could also be that the residue contacts which contain 210 different parameters,
as compared to the 91 parameters of the atom contacts, is more noisy.

For the fraction of relative accessibility surfaces per residue, low (<25%)
and high (>75%) relative accessibility surface gives the best correlations of 0.69
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Residue cutoff (A) | C
4.0 0.54
5.0 0.63
6.0 0.65
8.0 0.57

10.0 0.51

12.0 0.44

Table 3: Correlation coefficient, C, between the predicted and correct value when a
neural network was trained only on residue contacts with different cutoffs.

Rel. accessibility | C

<25% 0.69
25%-50% 0.12
50%-75% 0.38
>75% 0.52

Table 4: Correlation coefficient, C, between the predicted and correct value when a
neural network was trained only on the fraction of relative accessibility surface per
residue.

and 0.52 respectively. It is more useful to know whether there is low or high
relative accessibility, than to know that there is something in between. In other
words the information on which residues that are most often buried or exposed,
corresponding to low and high accessibility, is more useful than the information
that some residues sometimes are buried/exposed and sometimes not. This
seems natural, since the accessibility is a measures hydrophicity, the fraction of
low (<25%) relative accessibility should ideally be high for non—polar residues
and low for polar residues and vice versa for high accessibility. This fact could
be used by the neural network to predict the quality of a model.

4.2 Additional analysis of training parameters

A further analysis of the training parameters was performed by varying every
parameter individually, and study the neural network prediction. This gave a lot
of information, but it was hard to draw any significant conclusions. In table 5 an
example of this analysis is shown. For example an increase in the N-O contact
type, which could be a measure of hydrogen bonding in the backbone, results
in an increase in predicted Q-score for 3.0 A cutoff, but a decrease in predicted
Q-score for 4.5 A cutoff. The length of a hydrogen bond is in the range 2.8 A.
This could mean that for the 3.0 A cutoff N-O contacts measures the hydrogen
bonding, whereas the N-O contacts for 4.5 A cutoff includes other N-O contacts
which do not constitute a hydrogen bond. Despite this the correlation coefficient
for the 4.5 A cutoff is much better according to table 2.

Contact with different type of carbons appears have a positive effect on the
Q-score prediction in most cases for the two cutoffs. This is probably due th
hydrophicity. Finally high S-S contacts seems also to have an increasing effect
on the Q-score prediction, this might be due to disulfur bridges.

The residue contacts and accessibility surfaces were also analyzed with the
same scheme as the atom contacts, but it was difficult to draw conclusions and
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are therefore omitted here.

4.3 Combining different parameter sets

In the next step neural networks were trained with various combination of the
different parameter sets from section 4.1. The result is shown in table 6.

The first obvious combination was to combine the best atom and residue
contacts, i.e 4.5 A atom contact cutoff with correlation 0.70 and 6 A residue
contact cutoff with a correlation of 0.64 and train a network with these two
parameter sets. The 4.5 A atom contact cutoff was chosen instead of the longer
cutoff choices with the same correlation, to restrict the atom contacts to short—
ranged forces.

The training on the new parameter set improved the performance to a cor-
relation of 0.74. If all relative accessibility surfaces also were added to the
training data for the network, a correlation of 0.81 was obtained. This is clearly
an improvement from the training only with atom or residue contacts.

Another combination used in the training was to use two pairs of atom and
residue contacts, one with short and one with long contact cutoff. This improved
the performance, for some cutoff choices, almost as much as the combination of
atom and residue contacts in the first step. This indicates that the short and
long contact cutoff have some non—overlapping information, which is useful for
predicting the quality of a model. If these four parameter sets are combined
with the accessibility surfaces a correlation of 0.83 was obtained for the best
cutoff choices.

Scatter plots for some parameter sets are shown in figure 10. Ideally all
points should lie on the solid line, but even if that is not the case here there
is faint tendency in that direction, when more combinations of the different
parameter sets is used. By comparing the upper left and lower right pictures,
corresponding the least and most parameter sets, a clear difference is seen. The
one with the most parameter sets is clearly better, with more points lying close
the solid line and not as spread as in the upper left picture.

To get an estimation of which discriminating power the neural network
trained with the best parameter sets has, i.e how good it is at discriminat-
ing good from bad models. The matthews correlation coeflicient, the sensitivity
and specificity were calculated for different cutoff choices on the Q—score. The
result is shown in figure 11. The matthews correlation coefficient has its maxi-
mum value of 0.77 for cutoff 7.5, the sensitivity and specificity for this cutoff are
0.69 and 0.92 respectively. This means that if the cutoff is set to 7.5, the neural
network founds 69% of all correct structures and that 92% of all predictions
made are correct.

From table 6, 3 and 2 it is evident that the accessibility surfaces has most
information on protein quality of the three parameter sets. Alone it gets a
correlation of 0.78 and together with some other parameter sets it improves the
correlation with about 0.05. This points to the fact that hydrophicity is an
important factor, and that the introduction of that information clearly has an
effect on how good the neural network predict the quality of a model.
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4.5 A cutoff
contact type | C | N | O | CA | CH3 | CH/CH2 | C(OO) | NH | NH2 | (C)oO | O= | OH | s
[¢] - - + 0 - - 0 + 0 - 0 0 0
N + - 0 - - + 0 + + 0 + +
o - + + + 0 + 0 - - - 0
CA + - 0 0 0 - + 0 + +
CH3 + + - 0 - - - - +
CH/CH2 + - 0 - R - 0 +
C(00) 0 0 + 0 0 + 0
NH 0 0 + 0 0 0
NH2 + + 0 0 -
(C)00 0 0 + -
o= 0 + 0
OH 0 0
S +
3.0 A cutoff
contact type | C | N | O | CA | CH3 | CH/CH2 | C(0O) | NH | NH2 | (C)oO | o= | OH | s
C + - + 0 + + 0 - - 0 - +
N 0 + - - - 0 - 0 + + -
[} - - - - + + + - - 0 0
CA - + + + - + - - + 0
CHS3 + 0 - + - - - R R
CH/CH2 0 - - - - - - -
C(00) + - 0 - 0 - -
NH + - + - - -
NH2 0 + + + -
(€)oo - - 0 R
o= - - +
OH - -
s +

Table 5: An illustration of what happens with the prediction when a atom contact
parameter is increased, in the above table the neural network were trained only on
atom contacts with a cutoff of 4.5 A and in the lower table with a cutoff of 3.0 A, ’-’
denotes a decrease in predicted quality, >+’ denotes an increase in predicted quality
and ’0’ denotes no change in predicted quality.
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res1 T€S2 atom;  atoms  accessibility C

6.0A - 45 A - - 0.74
- - - - all 0.73
- - 45A - all 0.78
6.0A - - - all 0.78
60A - 45 A - low/high | 0.79
6.0A - 45A - all 0.80
60A 80A 325A 45A - 0.79
6.0A 80A 3254 45A all 0.83
6.0A 100A 325A 45A - 0.78
6.0A 100A 3254 45A all 0.83
60A 120A 325A 45A - 0.77
6.0A 120A 3254 45A all 0.82
6.0A 100A 3.0A 45A - 0.76
6.0A 100A 30A 45A all 0.82
6.0A 100A 35A 45A - 0.76
6.0A 100A 35A 45A all 0.82
6.0 A 100A 375A 45A - 0.76
6.0A 100A 375A 45A all 0.82
40A 80A 30A 474 - 0.76
40A 80A 30A 4754 all 0.80
40A 120A 30A 47A - 0.73
40A 120A 30A 4754 all 0.79
40A 100A 325A 45A - 0.76
40A 100A 3254 45A all 0.80
40A 120A 325A 45A - 0.75
40A 120A 3254 45A all 0.82

Table 6: Correlation coefficient, C, between the predicted and correct value from
neural networks trained on various combinations of residue and atom contacts and
accessibility surfaces. resi, resz, atomi, atoms is the cutoff used in the training for
residue for residue and atom contacts respectively, low and high accessibility means
relative accessibility per residue in the range <25% and >75% respectively, all acces-
sibility means that all relative accessibility surfaces were used, i.e <25%, 25%-50%,
50%—75% and >75% and also the fraction of total accessible surface between non—polar

and polar residues.
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Only residue contacts, cutoff 6 A, corr0.64 Residue contacts 6 A + atom contacts 4.5 A, corr:0.74
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Figure 10: Scatter plots from predictions made by neural networks trained on different
combination of input parameters. Above left are the predicted and correct values for a
neural network trained only on the best residue contacts with 6 A cutoff, the correlation
coefficient is 0.64. Above right is the same for a network train on residue contact cutoff
6 A and on the best atom contact, 4.5 A cutoff. Lower left a network trained on residue
contact cutoff 6 A, atom contact cutoff 4.5 A and accessibility surfaces. Lower right
is the prediction for the neural network train with short and long atom and residue
contacts together with accessibility surfaces. For the atom contacts the cutoffs 3.25 A
and 4.5 A were used and for the residue contacts the cutoffs 6.0 A and 10.0 A were
used. All points should ideally lie on the solid line, this is obvious not the case here.
But by introducing more parameter sets in the training the performance is a clearly
improved. This is seen comparing the upper pictures with the lower, corresponding to
an increase in number of parameters.

4.4 Prediction of other quality measures

It is not certain that the Q—score is the most appropriate measure for the neural
network to predict, some other measure might be more suitable for the neural
network. To explore this, networks were trained to predict two other measures,
1/rmsd and LGscore, based on those parameter sets which gave the best results
for Q-score. The results is shown in table 7. These parameter settings might
not be the best for that particular measure and in a more thorough examination
one of course has to retrain on all different kinds of parameters. Because of lack
of time this was not done in this study.

The best correlation for 1/rmsd was 0.78 and for LGscore the best corre-
lation was 0.83. Which means that the neural network performs worse when
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Figure 11: Sensitivity (solid line), specificity (dotted line) and matthews correlation
coefficient (dashed line) as a function of cutoff for Q—score for prediction made by the
neural network trained on residue contacts cutoffs 6.0 A and 10.0 A, atom contacts
cutoffs 3.25 A and 4.5 A and accessibility surfaces. The matthews correlation coeffi-
cient is at maximum for cutoff 7.5, with a value of 0.77, for this cutoff the sensitivity
and specificity are 0.69 and 0.92 respectively.

resy resy atom;  atomg acc.surface  Ci/rmsa Crgscore
6.0A 80A 325A 45A all 0.74 0.83
6.0A 100A 325A 45A all 0.77 0.83
6.0A 120A 325A 45A all 0.78 0.83

Table 7: Correlation coefficient, C,msq and Crgscore, for neural network trained to
predict 1/rmsd and LGscore instead of Q-score. For the combination of parameters
indicated by resi, resz, atomi, atoms, acc.surface. For LGscore the performance is
comparable to the Q-score, while the performance for 1/rmsd is decreased.

predicting 1/rmsd instead of Q-score, but when predicting LGscore the per-
formance is maintained. This rises the question whether it might have been
better to train everything against LGscore instead of Q—score. To investigate
this the prediction for the neural network trained with 6.0 A and 12.0 A residue
contact cutoff in table 7, was analyzed further. This was done by comparing
the predictions from networks trained to predict Q—score, 1/rmsd and LGscore
respectively. A cutoff for correct prediction was defined, in such a way that the
number of true positives and true negatives, i.e the number of models predicted
true, were equal for all three cases. To begin the cutoff for Q—score was set to
7.5 from section 4.3. The number of models predicted as correct for this case
was 643. Then the cutoffs for 1/rmsd and LGscore was defined in such a way
that the total number of models predicted as correct were equal to 643. In this
the top 643 predictions from each method were compared. The result from this
comparison is shown in table 8. From the table Q—score gives the best predic-
tion and LGscore and 1/rmsd have about the same performance. Still this is
something that can be more thoroughly investigated in the future.

Attempts were also made to train two separate neural networks with different
parameter set, and then use the the output from these two networks as input to
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Pred value cutoff —matthews corr specificity sensitivity

Q-score 7.5 A 0.77 0.92 0.69
LGscore 4.25 A 0.70 0.81 0.67
rmsd 78 A 0.71 0.80 0.69

Table 8: Matthews correlation coefficient, specificity and sensitivity for three neural
networks trained to predict Q-score, LGscore and rmsd respectively. The cutoff was
chosen in such a way that the total number of models with a score above the cutoff
was equal in all three cases.
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Figure 12: Q-score plotted against the the corresponding alignment score between
target sequence and template structure used in homology modelling. A high alignment
score usually results in a high quality model, every model with an alignment score
above 100 (horisontal line) always gives a Q—score higher than 3 (vertical line).

a third network. This prodcedure did not improve performance, and thus was
not explored further.

4.5 Training on alignment data

It is well known that a good alignment between target sequence and template
structure in general produce a good model. In figure 12 it is clearly seen that
a good alignment results in a high quality model. If the alignment score is low
the model could still be of high quality, which means that the opposite, i.e that
a bad alignment (based on the score), not necessarily implies a bad model.

As a comparison to the other training parameters, a neural network was
trained to predict the quality of the model based on the score from the align-
ment. Long sequences have more possibilities for aligning the sequences, which
increases the probability of getting a higher alignment score, this means that
alignment score is dependent of the length of the two aligned sequences. To com-
pensate for this the neural network was trained on the alignment score together
with the lengths of the two aligned sequences.

The correlation between the predicted and correct quality was 0.85 for the
test set, which is better than the best parameter set. But still this neural
network does not give better predictions, which is shown in the scatter plots
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Figure 13: To the left a scatter plot from values predicted by a neural network trained
on only the alignment score and length of the two aligned sequences. To the right a
scatter plot from values predicted by a neural network trained on the best combination
of training parameters together with the alignment score.

in figure 13. It seems as if the network either gives a low or a high Q-score
prediction, this is reasonable since the only information it has is essentially the
alignment score. However this rises the question, if the correlation coefficient
actually is the best measure of neural network performance?

An alternative measure would be to calculate the correlation coefficient for
some specific region, which are of interest. If one has to choose it is more
interesting to distinguish between high quality models, since low quality models
probably are quite easy to filter out anyway. The correlation coefficient for all
models with a Q-score higher than 5, was taken as a new measure. This new
measure was 0.65 for the neural network prediction trained only on alignment
data and 0.69 for the best other combination of parameters. But even if this
could be used as a new measure, the ordinary correlation coefficient together
with a scatter plot work just as fine.

If a neural network is trained with the best parameters, that is 6.0 A and
10.0 A cutoff on the residue contacts, 3.25 A and 4.5 A cutoff on the atom
contacts, all accessibility surfaces and the alignment score a correlation coef-
ficient of 0.86 is obtained. The scatter plot for that prediction is shown in
figure 13. Even though the correlation coefficient is only slightly better than for
the training only on alignment data, the scatter plot reveals that this prediction
is significantly better.

5 Conclusions and future steps

A method for predicting the quality of a protein model using neural networks
has been presented. Best performance was obtained for a neural network trained
with short and long atom and residue contacts together with solvent accessibility
surfaces. This performance was comparable to the performance obtained for a
neural network trained only on alignment data (score and the length of the two
aligned sequences). The alignment is regarded to be the single most important
factor determining the accuracy of a 3D model and a high alignment score
usually gives a model of high quality. The method seems promising and worth
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Figure 14: Histogram over the quality for the LiveBench—2 models used as an addi-
tional test set. The quality of the LiveBench models were general

developing further.

5.1 Neural network performance on an additional test set

To evaluate the method further, models generated from LiveBench-2 (LB-2)
data [39], were used as a additional independent test set. The quality distri-
bution for the LB—2 models were a bit different for the models in the test set
earlier in this study compare figure 9 and 14. The LB-2 set had more models
with a Q—score between 0 and 15 than the test set, on the other the hand the
LB-2 had fewer really good models with a Q-score above 20.

Unfortunately performance was not sustained, the correlation between pre-
dicted and correct value was 0.50, which is rather modest. This could be due to
some feature of the LB-2 models, or some artifact in the training and test set.
But still the prediction is not completely random, and it might contain some
information which could be useful.

This problem needs to be looked in to, and it would be the next natural step
to take.

It could be something wrong in how the test and training set are split up.
This could be done in another way, for instance using cross—validation, were
the data is split into five parts and in each neural network training, one part is
used as a test set and the remaining four as training set. This is then repeated
so that all five parts are used both for testing and training, but not both in
the same network training. This might remove some undesirable features in the
current test and training set.

Other possibilities to improve performance could be to include more param-
eters, with the risk of introducing more noise. For instance some parameter
with information on secondary structure might increase the performance. One
could also think of the possibility of having more atom contact types than the
13 used here. Or to increase the number of atom contacts types and remove all
residue contacts, and describe the whole protein on the atom level.

Even if the method described here does not perform as good on the LiveBench—
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2 data as on the test set, it could still be used to improve the specificity of
fold-recognition methods. Pcons [44] is a fold recognition consensus predic-
tor developed by Elofsson and co—workers. It is, like the method presented in
this study, neural network based, and it tries to select the best prediction from
several predictions made by different fold recognition servers, by assessing the
quality of the models generated by the servers. Right now Pcons makes 10%
more correct predictions than the best single server. This might be improved
further by including the method developed in this study.

Acknowledgements

I would like to thank my supervisor Arne Elofsson at Stockholm Bioinformatics
Center, for his help and valuable ideas throughout the project. I would also like
to thank all students and all other people at Stockholm Bioinformatics Center
for their help and support during this project.

31



REFERENCES

References

[1]

[2]

[3]

[4]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Al-Lazikani B, Jung J, Xiang Z & Honig B. (2001) Protein structure pre-
diction. Curr. Opin. Chem. Biol. 5, 51-56.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN & Bourne PE. (2000). The Protein Data Bank. Nucleic Acids
Res. 28, 235—-242.

Murzin AG, Brenner SE, Hubbard T & Chothia C. (1995). SCOP: a struc-
tural classification of proteins database for the investigation of sequences
and structures. J. Mol. Biol. 247,536-540.

Holm L & Sander C. (1999). Protein folds and families: sequence and
structure alignments. Nuleic Acids Res. 27, 244-247.

Orengo CA, Pearl FMG, Bray JE, Todd AE, Martin AC, Conte L. Lo &
Thornton JM. (1999). The CATH database provides insights into protein
structure/function relationship. Nuleic Acids Res. 27, 275-279.

Pearson WR. (1990). Rapid and Sensitive Sequence Comparison with
FASTP and FASTA. Methods Enzymol., 183, 63-98.

Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ. (1990). Basic
Local Alignment Search Tool. J. Mol. Biol. 215, 430-410.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W &
Lipman DJ. (1997). Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucl. Acid Res. 25, 3389-3402.

Jones DT, Taylor WR, & Thornton JM (1992) A new approach to protein
fold recognition. Nature, 358, 86—89.

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F & Sali A. (2000).
Comparative protein structure modeling of genes and genomes. Annu. Rev.
Biophys. Biomol. Struct. 29, 291-325.

Murzin AG. (1999). Structure classification-based assessment of CASP3
predictions for the fold recognition targets. Proteins, 37(S3), 88-103.

(1999). CAFASP-1: Critical assessment of fully automated structure pre-
diction methods. Proteins, 37(S3), 209-217.

Colovos C & Yeates TO. (1993). Verification of protein structures: Patterns
of nonbanded atomic interactions. Protein Science, 2, 1511-1519.

Lazaridis T & Karplus M. (1998). Discrimination of the native from mis-

folded protein models with and energy function including implicit solvation.
J. Mol. Biol. 228, 477-487.

Anfinsen CD. (1973). Principles that govern the folding of protein chains.
Science, 181, 233-230.

Park B & Levitt M. (1996). Energy functions that discriminate X-ray and
near—naive folds from well-constructed decoys. J. Mol. Biol., 258, 367-392.

32



REFERENCES

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Park B, Huang ES & Levitt M. (1997). Factors affecting the ability of
energy functions to discriminate correct from incorrect folds. J. Mol. Biol.,
266, 831-846.

Sippl M. (1995). Knowledge based potentials for proteins. Curr. Opin.
Struct. Biol. 5, 229-235.

Samudrala R & Moult J. (1998). An all-atom distance—dependent condi-
tional probability discriminatory function for protein structure prediction.
J. Mol. Biol. 275, 895-916.

Sippl M. (1990). Calculations of confromational ensembles from potentials
of mean force. An approach to the knowledge based prediction of local
structures in globular proteins. J. Mol. Biol. 213, 859-883.

Cristébal S, Zemla A, Fischer D, Rychlewski L, & Elofsson A. (2001). How
can the accuracy of a protein model be measured?. submitted.

Dill KA. (1990) Dominant forces in protein folding Biochemistry. 29, 7133-
7155.

Baker EN & Hubbard RE. (1984). Hydrogen bonding in globular proteins.
Prog. Biophys. Mol. Biol. 44,97-179.

Stickle DF, Presta LG, Dill KA & Rose GD. (1992). Hydrogen bonding in
globular proteins. J. Mol. Biol. 226, 1143—-1159.

Sali A & Blundell TL. (1993). Comparative protein modelling by satisfac-
tion of spatial restraints. J. Mol. Biol. 234, 779-815.

Petersen TN, Lundegaard C, Nielsen M, Bohr H, Bohr J, Brunak S, Gippert
GP & Lund O. (2000). Prediction of protein secondary structure at 80%
accuracy. Proteins, 41, 17-20.

Park J, Karplus K, Barrett C, Hughey R, Haussler D, Hubbard T & Chothia
C. (1998). Sequence comparisons using multiple sequences detect three
times as many remote homologues as pairwise methods. J. Mol. Biol., 284,
1201-1210.

Lundstrém J. (2001). Pcons: A consensus approach to protein fold recog-
nition. Master thesis. Stockholm University.

Bishop CM. (1995). Neural networks for pattern recognition. Oxford Uni-
versity Press.

Mgller MF. (1993). A Scaled Conjugate Gradient Algorithm for Fast Su-
pervised Learning. Neural Networks, 6, 525-533.

Lawrence S, Giles CL & Tsoi AC. (1997). Lessons in Neural Network Train-
ing: Overfitting may be Harder than Expected. AAAI-97, 540-545.

Lo Conte, L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG & Chothia C.
(2000) SCOP: a structural classification of proteins database. Nucl. Acid
Res., 28, 257-259.

33



REFERENCES

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

Bhat TN, Bourne P, Feng Z, Gilliland G, Jain S, Ravichandran V, Schneider
B, Schneider K, Thanki N, Weissig H, Westbrook J & Berman HM. (2001)
The PDB data uniformity project. Nucleic Acids Res. 29, 214-218.

Levitt M & Gerstein M. (1998). A unified statistical framework for se-
quence comparison and structure comparison. Proc. Natl. Acad. Sci. USA,
95, 5913-5920.

Nabney I & Bishop C. (1991). Netlab. Free Software Foundation Inc.

Emanuelsson O, Nielsen H & von Heijne G. (1999). ChloroP, a neural
network—based method for predicting chloroplast transit peptides and their
cleavage sites. Protein Science, 8, 978-984.

MacKerell AD, Bashford D Jr, Bellott M, Dunbrack RL Jr, Evanseck JD,
Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L,
Kuczera K, Lau TK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom
B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J,
Watanabe M, Widrkiewicz-Kuczera J, Yin D & Karplus M. (1998). All-
atom empirical potential for molecular modeling and dynamics studies of
proteins. J. Phys. Chem. B, 102, 3586—3816.

Bujnicki JM, Elofsson A, Fischer D & Rychlewski L. (2001). LiveBench-1:
continuous benchmarking of protein structure prediction servers. Protein
Science, 10, 352—-361.

Bujnicki JM, Elofsson A, Fischer D & Rychlewski L. (2001). LiveBench-
2: large-scale automated evaluation of protein structure prediction servers.
submitted.

Brunak S, Engelbrecht J & Knudsen S. (1991). Prediction of human mRNA
donor and acceptor sites from the DNA sequence. J. Mol. Biol., 220, 49-65.

Lee B & Richards FM. (1971). The interpretation of protein structures:
estimation of static accessibility. J. Mol. Biol., 220, 507-530.

Hubbard SJ, Campbell SF & Thornton JM. (1991). Molecular recognition.
Conformational analysis of limited proteolytic sites and serine proteinase
protein inhibitors. J. Mol. Biol., 220, 507-530.

Sippl M. (1993). Recognition of errors in three-dimensional structures of
proteins. Proteins, 17, 355-362.

Lundstréom J, Rychlewski L, Bujnicki JM & Elofsson A. (2000). Pcons: A
neural network based consensus predictor that improves fold recognition.
submitted.

34



