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Development of a modular HMM package for biological sequence
analysis
Abstract

A hidden Markov model (HMM) is a probabilistic finite state machine which
is widely used in biological sequence analysis. We have constructed a ver-
satile tool, called modhmm, for constructing HMMs of arbitrary design and
applying them to different problems inside the field of biological sequence
analysis.
One such sequence analysis problem is protein fold recognition. Using

modhmm we have developed a new method for scoring amino acid sequences
against HMMs using multiple sequence information in both the target- and
query- sequences. Preliminary results show a definite improvement in re-
mote homology detection compared to the standard HMM method of using
multiple sequence information only in the query sequence.

Utveckling av ett modulbaserat HMM-paket för biologisk
sekvensanalys

Sammanfattning

Dolda markovmodeller (förkortat HMM) är probabilistiska finit-tillst̊ands-
maskiner, vilka används bland annat inom biologisk sekvensanalys. Vi har
utvecklat modhmm, ett flexibelt verktyg för att konstruera HMM:er med
godtycklig arkitektur och använda dessa p̊a olika problem inom sekvens-
analys. Ett viktigt sekvensanalysproblem är proteinveckningsigenkänning.
Med hjälp av modhmm har vi utecklat en ny metod för att jämföra en pro-
teinsekvens med en HMM. Denna metod använder multipel sekvensinforma-
tion i representationen av b̊ade fr̊age- och m̊al- sekvenser. Preliminära resul-
tat visar en klar förbättring i att finna avlägset homologa proteiner jämfört
med när man använder multipel sekvensinformation enbart i fr̊agesekvensen,
vilket är standardmetoden för HMM:er.
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1 Introduction

1.1 Biological sequence analysis and protein structure pre-

diction

Biological sequence analysis belongs to a group of problems where given a
set of strings from some alphabet, the goal is to find which of these strings
are related, or in some way similar to each other. In biology this type of
classification is useful since it can help to organize proteins-, DNA- or RNA-
sequences into groups that are related on a structural or functional level.
And since there currently exists a large amount of these sequences for which
little is known about their structures and functions, being able to derive
such knowledge from them is very useful.
One field of research where sequence analysis plays an important role is

protein structure prediction, i.e. deciding the three dimensional structure
of a given protein (amino acid sequence). There are several approaches to
this problem. One of the most promising has been to identify a protein
with known structure which has the same fold as the query protein. This is
known as fold recognition. Folds are categories of three dimensional struc-
tures that are used to cluster proteins with similar 3D structures into groups.
Fold recognition methods can be divided into two groups based on the type
of information they use to recognize the fold, structure-based methods and
prediction-based methods. However, these groups contain many fairly di-
verse subtypes, and there have also been approaches that combine methods
from the two groups.
The basic idea in structure-based methods is to try to find the best struc-

ture for a probe sequence by threading it through a library set of folds and
measuring an energy function for each possible alignment of the sequence
onto that fold. An example of a method based on this idea is THREADER
[15].
For prediction based methods the evolutionary term homology plays an

important role. Two proteins are homologous if they share the same fold
because of their evolutionary history, i.e. they have been developed from the
same ancestor through a series of mutations. The point is that even though
homologous proteins may have undergone substantial sequence changes, they
are still similar enough to exhibit more or less the same structural properties,
and having conserved their structure they have many times conserved much
of their biological functionality as well. Therefore, predicting a protein’s
structure can often help to assign a putative function to a new protein
sequence.
The classical way of performing fold recognition based on homology has

been to take a new sequence and search a database of proteins of known fold
for a sequence similar to the query sequence. Traditionally, this has been
done using dynamical programming algorithms based on substitution matri-
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ces (section 2.3) like the Needleman-Wunch- [10], or the Smith-Waterman-
algorithms [23] or by fast heuristic algorithms like BLAST [1]. However,
when the sequence identity1 falls below 20%, into the so called twilight zone
of sequence similarity, these methods start having difficulties detecting se-
quence homologies.
One way of improving the sensitivity of homology detection is by using

existing information of the three dimensional structure of the proteins. This
can for instance be done using predicted secondary structure information
(below). The secondary structure of a protein can be correctly predicted to
a degree of around 76% and even though this is not completely accurate,
including this information has been shown to increase homology detection
[11].
Another fruitful approach is to incorporate information from multiple re-

lated sequences to achieve a more robust representation of a protein sequence
to use when searching a database. Using this type of information it is possi-
ble to detect some protein homologies where the sequence identity is low. A
very popular method based on this idea is PSI-BLAST [2], which performs
iterative database searches, where information from matches detected in one
iteration is used when searching the database in the next iteration.
The field of protein structure prediction also includes more than fold recog-

nition. One example is the earlier mentioned secondary structure prediction

which aims to predict not the whole three dimensional structure of a pro-
tein but rather wishes to classify the amino acid residues into what type of
structural region they belong to.
There is also the area of topology prediction, where the goal is to predict the

protein’s topology. For example, for transmembrane proteins (proteins that
go through one of the membranes in the cell) methods have been developed
to predict the number of transmembrane helices and the proteins’ in/out
orientation relative to the membrane [17].

1.2 Hidden Markov models in sequence analysis

As described in the previous section, fold recognition can be improved by
defining sequence similarity on the basis of a set of sequences rather than
on single native sequences. The question is how to represent this multiple
sequence information. There are several ways to do this. Two common ex-
amples are multiple sequence alignments and sequence profiles based on sub-
stitution matrices. Yet another method is using a hidden Markov model, or
HMM. An HMM is a probabilistic model (originally used for speech recogni-
tion) which has turned out to be very suitable for modeling multiple sequence
information. Basically an HMM is a probabilistic finite state machine. It
consists of a set of interconnected states, each of which emits an observable

1Identity is measured as the share of residues for which two sequences have the same
amino acid.
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output symbol. To each state there are two types of parameters, emission
probabilities, which are the probabilities of emitting each symbol from some
alphabet, and transition probabilities, which are the probabilities of moving
from that state to a new state. An HMM can be used to represent a set
of sequences by adjusting the transition- and emission- probabilities so that
when “walking” through the HMM from a start state to an end state by
randomly selecting the transitions and emissions to use, the probability of
producing any of the sequences in this set is high. Since HMMs are prob-
abilistic models, sequences that are similar to the ones in the set for which
the HMM has been adjusted will also be produced with high probability,
whereas sequences dissimilar from them will be produced with low proba-
bility. This feature is of course the same as the basic principle in most other
machine learning approaches, such as artificial neural networks and support
vector machines. The name hidden Markov model comes from the fact that
when doing this type of “random walk” through an HMM one gets, together
with an observable sequence of output symbols, a hidden sequence of state
symbols, which constitutes a first order Markov chain.
There are a couple reasons why HMMs are suitable for representing mul-

tiple sequence information. Firstly, they rest on a solid theoretical founda-
tion from probability theory. Compared to corresponding sequence model-
ing methods this is especially an advantage in the scoring procedure where
HMMs automatically have a non ad hoc scoring method. Secondly, HMMs
have good flexibility for emphasizing the importance of different regions of
a sequence differently, both in the architecture and in the possibility of giv-
ing more importance to similarity in some states than others. A variety of
algorithms exist for doing local similarity mesurements.
Because many problems in computational biology reduce to some sort of

linear sequence analysis, HMMs have been used for many different types
of problems such as genefinding, radiation hybrid mapping, phylogenetic
analysis and more. However, HMMs are generally most suited to problems
which in themselves closely resemble linear sequence analysis problems, i.e
problems with little dependence on correlations between sequence residues.
For problems with many such correlations HMMs are often outperformed
by for instance neural networks.
In protein structure prediction, there are many cases when HMMs make ex-

cellent tools. One successful HMM application is the so called profile HMM
[16] which is a specific HMM architecture, well suited to represent profiles
of multiple sequence alignments (section 2.3). Profile HMMs can be used
both for performing homology searches and for aligning a “match” sequence
to a profile model. Another example of a succesful HMM application is the
HMMSTR, which is an HMM designed to find recurrent local features of
protein sequences and structures that transcend protein family boundaries
[4]. And in topology prediction, the TMHMM is the state of the art for
predicting the membrane regions in transmembrane proteins [17]. Recently,
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an increased amount of hybrid methods has also come about. These are
methods that are partly based on HMMs and partly on something else. One
example is the GIOHMM, which is a combination of an HMM and a neural
network used for predicting protein contact maps [20].

1.3 Aims of the project

As described in the last section, HMMs can be used in many different ways in
the area of biological sequence analysis. Although HMMs have been around
for a while in bioinformatics the belief is that they have not yet been used
to their full potential, especially not in the hybrid combinations with other
methods mentioned earlier. The aim of this project was therefore to create
a flexible and easy to use platform for creating HMMs of different types to
apply on different biological sequence analysis problems with emphasis on
the area of protein structure prediction.
Some software packages related to this exist already, for instance hmmer2,

SAM3 and HMMpro4. However, there is as of yet no software of this type
which both has the desired flexibility features and comes with freely dis-
tributed source code. This is of importance in this case since an integral
part of the usage of this HMM-package is to support the addition of new
features that might become useful as research in the sequence analysis field
progresses. The implementation of training- and search- algorithms in this
HMM-package builds for the most part on existing theory. However, the sim-
ulated annealing and momentum term optimization methods in the training
algorithm are independent work.
A further aim for this project was to extend the basic HMM-algorithms

with a method for building and scoring HMMs using multiple sequence
alignments (as supposed to plain sequences) as input data. This part of
the project builds on an earlier attempt to improve the protein structure
prediction performance of profile HMMs by adding multiple sequence infor-
mation to the target sequence done by Björn Larsson and Arne Elofsson
[18].
The reasons for incorporating this into the project were twofold. First,

it is an interesting attempt to try to improve structure prediction, as of
yet not tried in this form. As mentioned before, there exists a common
belief that multiple sequence information better describes the significant
features of a protein sequence than a single sequence does. The idea of
using multiple sequence information both in the query and in the target
is however rather new. Some work has been done to develop methods for
this type of comparison with promising results [14] [24] [25] [26]. There
also exists an HMM-method for doing this type of comparison (no results

2http://hmmer.wustl.edu/
3http://www.cse.ucsc.edu/research/compbio/HMM-apps/HMM-applications.html
4http://www.netid.com/index.html
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published yet).5 The difference between this method and the method we use
in this project is that in our method, only one of the profiles are represented
as an HMM, while they compare two HMMs. The second reason for this part
of the project was to test the performance of the HMM package by using it
to solve a real problem and thereby help identify what areas of the system
need improvement and to so aid the further development of the program.

5http://supfam.mrc-lmb.cam.ac.uk/PRC/
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2 Theory

2.1 Theory of HMMs

2.1.1 Markov chains and hidden Markov models

AMarkov chain can be defined as a pairM = (Q,A), where Q = {q0, . . . , qs}
is a set of states and A = {aqq′} is a set of transition probabilities for which
∑

q′ aqq′ = 1 and aqq′ = P (qi = q′|qi−1 = q). M generates a state path
π = π1, π2, . . . where πi is the state in step i. We can write the probability
of a state sequence π as

P (π)

= P (πL, πL−1, . . . , π1)

= P (πL|πL−1, . . . , π1)P (πL−1|πL−2, . . . , π1) · · ·P (π1)

by using P (X,Y ) = P (X|Y )P (Y ) a number of times. Further, the key
property of the Markov chain, the Markov condition, is that the probability
of each state in the sequence depends only on the value of the preceding
state. This means that P (πi|πi−1, . . . , π1) = P (πi|πi−1) = aπi−1πi . The
previous equation can therefore be rewritten

P (π) = P (πL|πL−1)P (πL−1|πL−2) · · ·P (π2|π1)P (π1) = P (π1)
L

∏

i=2

aπi−1πi .

A more detailed description of Markov chains can be found in Cox & Miller
[5].
A hidden Markov model is an extension to the classical Markov chain and

can be defined as a 6-tuple M = (Q,Σ, A,E, q0, qs) where Q = {q0, . . . , qs}
is a set of states, Σ = {σ1, . . . , σr} is the alphabet, A = {aqq′} is a set
of transition probabilities (with the same conditions as for Markov chains),
E = {eq} is a set of symbol distributions such that ∀q ∈ Q 6= q0, qs :
∑r

i=1 eq(σi) = 1 ∧ 0 ≤ eq(σi) ≤ 1, q0 is the start state and qs is the end
state. The addition of specific begin and end states is not strictly necessary
but facilitates the notation regarding the probabilities for the beginnings
and ends of sequences.
M generates a state path π = π0, π1, . . . and a symbol sequence x =

x1, x2, . . ., where the state path is hidden, starts in q0 and ends in qs. As
before, the state chain is characterized by parameters

aqq′ = P (qi = q′|qi−1 = q).

For the symbol sequence however, we have a new set of parameters

eqj (σi) = P (xk = σi|πi = qj)
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or informally eqj (σi) is the probability that symbol σi is seen when in state
qj .
The joint probability of a specific state-symbol sequence of M is

P (x, π) = aq0π1

L
∏

i=1

eπi(xi)aπiπi+1

where πL+1 = qs. This equation can be proven by induction over L. For
L = 0 we get

P (x, π) = P (π0, π1) = aq0qs

which can be interpreted as the probability of transiting from the start state
directly to the end state, not emitting anything. Assuming the equation
holds for L− 1 we get

P (x1, . . . , xL, π0, . . . , πL+1)

= P (x1, . . . , xL, π0, . . . , πL+1|x1, . . . , xL−1, π0, . . . , πL) ∗

P (x1, . . . , xL−1, π0, . . . , πL)
Mark.Cond.

= P (xL, πL+1|πL) ∗ P (x1, . . . , xL−1, π0, . . . , πL)

Ind.Hyp.
= P (xL, πL+1|πL) ∗ aq0π1

L−1
∏

i=1

eπi(xi)aπiπi+1

= aq0π1

L
∏

i=1

eπi(xi)aπiπi+1
.

For a more indepth description of HMMs see for example Rabiner [21].

2.1.2 The forward, backward and Viterbi algorithms

When working with HMMs it is often necessary to be able to retrieve the
state paths for the sequences. For this purpose three dynamic programming
algorithms are at the core of every HMM implementation: Viterbi, forward
and backward. The Viterbi algorithm is used to calculate the most probable
state path given a sequence of symbols, while forward and backward are
used to calculate the total probability for a sequence to be produced by an
HMM by adding the probabilities for all possible state paths producing that
sequence.
As we saw in the previous section, the formula for the joint probability of

an observed sequence x and a state sequence π is

P (x, π) = aq0π1

L
∏

i=1

eπi(xi)aπiπi+1
.

The Viterbi algorithm calculates the specific state path that has the highest
probability. This can of course not be done by examining all possible paths,
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since the number of possible paths is exponential to the number of states.
Instead the Viterbi algorithm uses recursion. Let the most probable path for
a sequence x be π∗ = argmaxπP (x, π). Now suppose that the probability
vq(i) of the most probable path ending in state q with observation xi is
known for all states q. Then the probability for observation xi+1 in each
state q′ can be calculated by

vq′(i+ 1) = eq′(xi+1)maxq(vq(i)aqq′).

This can be motivated since

vq′(i+ 1) = P (x1, . . . , xi+1, qi+1 = q′)

= maxq(P (x1, . . . , xi+1, qi+1 = q′|x1, . . . , xi, qi = q) ∗ P (x1, . . . , xi, qi = q))

= maxq(P (xi+1, qi+1 = q′|qi = q) ∗ P (x1, . . . , xi, qi = q))

= maxq(eq′(xi+1) ∗ aqq′ ∗ vq(i))

= eq′(xi+1) ∗maxq(aqq′ ∗ vq(i)).

Since all sequences must start in state q0, the initial condition is that vq0(0) =
1. The algorithm terminates when i = L, which is the length of the sequence.
If an HMM has a non-emitting end state we must also incorporate vqs(L+
1) = maxq(vq(L)aqqs). By keeping backward references the state sequence
can then be found by backtracking.
The time complexity for this algorithm is O(|Q|2L), which can be moti-

vated as follows. To decide vq′(i + 1) we need to examine all probabilities
vq(i), which are |Q|. The number of vq′ ’s to decide for each value of i is
also |Q| and finally the number of i’s is equal to the length of the sequence,
which is L.
Sometimes it is not enough to just calculate the most probable path through

an HMM for a sequence. To calculate the total probability of a sequence
one must calculate the sum of the probabilities for all possible paths that
produce the sequence. This can be done using the same approach as in
the Viterbi algorithm. The forward algorithm is in fact exactly similar to
Viterbi, only replacing maxq(vq(i)aqq′) with

∑

q vq(i)aqq′ . Informally this
means that the total probability of having produced a sequence up to and
including observation xi+1 ending in state q′ is derived by taking the proba-
bility of having produced the sequence up to (but not including) xi+1 ending
in q multiplied with the probability of moving from q to q′. We then sum
this product over all states q. The total sum is then multiplied with the
probability of emitting symbol xi+1 in q′. Or to state it formally

fq′(i+ 1) = eq′(xi+1)
∑

q

fq(i)aqq′ .

The backward algorithm performs the same task as the forward algorithm
with the difference of (as the name implies) starting the calculation at the
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back of the sequence. This leads to a slightly different recursion step:

bq(i) =
∑

q′

bq′(i+ 1) ∗ aqq′ ∗ eq′(xi+1).

Informally, the probability of being in state q having produced the part of
the sequence from xi+1 to the end can be calculated by taking the probability
of being in state q′ having produced the part of the sequence from xi+2 to
the end, multiplied with the probability of moving from q to q′. This is
multiplied with the probability of emitting xi+1 in q′ and summed over all
states q′. Apart from this the forward and backward algorithms are basically
the same.
Using both the forward and backward algorithms it is possible to derive

such information as what the probability is that observation xi came from
state q given the observed sequence x, that is P (πi = q|x). To calculate
this, we need to know P (x, πi = q), which we can get quite easily since

P (x, πi = q)

= P (x1, . . . , xi, πi = q)P (xi+1, . . . , xL|x1, . . . , xi, πi = q)
Mark.Cond.

= P (x1, . . . , xi, πi = q)P (xi+1, . . . , xL|πi = q)

= fq(i) ∗ bq(i)

So we get

P (πi = q|x) =
P (x, πi = q)

P (x)
=

fq(i) ∗ bq(i)

P (x)

where P (x) is calculated for instance by forward.
A common implementation problem regarding these algorithms is that the

accumulated probabilities tend to get so small that they cause underflow
errors. Two schemes exist to account for this, either one can use the loga-
rithm of the probabilities or one can rescale them to some reasonable value
in each step of the algorithm.
There also exists a possibility of extending the standard HMM specification

to include silent. These are states which do not emit any symbols but
behave as regular states in all other aspects. To account for silent states all
three algorithms need to be changed slightly. For the Viterbi algorithm, the
change is the following:

1. For all regular states q′, calculate vq(i+ 1) as before.

2. For all silent states q′, put maxq(vq(i + 1)aqq′) in vq′(i + 1) for all
regular states q.

3. Starting from the lowest numbered silent state q′ put maxq(vq(i +
1)aqq′) in vq′(i+ 1) for all states q < q′ if the value is larger than the
value stored there in step 2.
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The numbering of the silent states is done so that any transition between
silent states goes from a lower numbered state to a higher numbered one.
This is to avoid loops consisting entirely of silent states, which make the
situation more complicated, however not unsolvable. The changes for the
forward and backward algorithms are done in the same fashion as for Viterbi.
Further details and a more extensive description of Viterbi, forward and

backward, can be found in Durbin et al [6].

2.1.3 Expectation maximization and the Baum-Welch training
algorithm

When creating an HMM to describe a set of sequences the goal is to make
the likelihood for the HMM to produce these sequences high and the like-
lihood for it to produce all other sequences low, preferably with a distinct
border between the two groups. To help accomplishing this, there are two
parts. One is the architecture of the HMM, i.e. the possible state transitions
and possible emissions. The other is the fitting of the aqq′ and eq(σ) param-
eter values to maximize the likelihood of the sequence set being produced
by the HMM. Since one rarely has access to or knowledge of all sequences
that belong to the set one wishes to model, fitting the parameters is usually
done by adjusting them to fit a subset this set, commonly known as train-
ing the HMM. There are two situations to handle when doing parameter
optimization. The state paths may be known or the state paths may be
unknown.
When the state paths are known, the parameter estimation is fairly straight

forward. Let Aqq′ be the number of times the transition from q to q′ is used in
the set of training sequences and Eq(σ) be the number of times σ is produced
in state q in the same set. Then the optimal parameter configuration for
aqq′ and eq(σ) is given by

aqq′ =
Aqq′

∑s
i=0Aqqi

and eq(σ) =
Eq(σ)

∑

σ′ Eq(σ′)
(1)

which can be proven formally (a proof can for instance be found in Durbin
et al. [6]), but which is also intuitively reasonable.
The case when the state paths are unknown is sligthly harder. The values

of Aqq′ and Eq(σ) are not known a priori, but must be calculated somehow.
The most common method for this is a variant of the expectation maxi-
mization (EM) algorithm called the Baum-Welch training algorithm. This
is an iterative method which first estimates the Aqq′ and Eq(σ) values by
considering the paths for the training sequences using the current aqq′ and
eq(σ) values and then estimates new aqq′ and eq(σ) values using (1). This
procedure is then repeated until some stopping criterion is reached. Aqq′

and Eq(σ) are calculated using the forward and backward algorithms in the

14



way described in the previous section. The probability that aqq′ is used at
position i in sequence xj is

P (πi = q, πi+1 = q′|xj , θ) =
fq(i) ∗ aqq′ ∗ eq′(x

j
i+1 ∗ bq′(i+ 1)

P (xj)

where θ is the aqq′ and eq(σ) parameter values. From this, the exact number
of times that aqq′ is used can be derived by summing over all positions i and
over all training sequences x.

Aqq′ =
∑

j

1

P (xj)

∑

i

P (πi = q, πi+1 = q′|xj , θ).

Similarly, the expected number of times a symbol σ is emitted in state q can
be found through

Eq(σ) =
∑

j

1

P (xj)

∑

{i:xj
i
=σ}

f jq (i) ∗ b
j
q(i).

It has been proven that the algorithm is guaranteed to improve the overall
likelihood of the model in each iteration, which means that it converges
towards a local maximum. For details, please see Durbin et al. [6]. What
local maximum the algorithm ends up in is however greatly dependent on
the starting values of the parameters.
The time complexity for one iteration is O(

∑S
j=1(|Q|

2 ∗ Lj)), where S is
the number of sequences in the training set and Lj is the length of the
j’th sequence. The overhead of this algorithm is however fairly large. The
number of iterations performed depends on the stopping criterion. Since the
algorithm operates in continuous space it is possible to iterate for an infinite
number of times. Usually however, the algorithm converges pretty close to
a maximum in less than 20 iterations.
There has been some research on how to optimize HMM training, mostly

methods for avoiding getting stuck in local maxima. Some example opti-
mization methods that have been tried for HMMs are simulated annealing
[7] and noice injection [13].

2.1.4 HMM scoring methods

In an HMM context scoring means measuring how well a particular sequence
fits an HMM. The simplest way of doing this is to run the Viterbi or forward
algorithm and let the result be the score. To avoid underflow problems one
usually works with the logarithm of the result. This result is called the
log-likelihood score (or LL-score). A drawback with this method is that the
score is highly dependent on the length of the sequence. A short random
sequence is likely to get a better score than a long sequence which belongs
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to the family modeled by the HMM. The common way to account for this is
to divide the LL-score with the length of the sequence (and also put a minus
sign in front of the result) to get what is called the normalized log-likelihood.
This improves the result, but still the scores are too fuzzy to be convenient
to use as discrimination functions.
The problem with normalized log-likelihood is that it is a non-related mea-

surement. An amino acid sequence might for instance consist mostly of the
overall most common amino acids, which will tend to give a high normalized
log-likelihood score in many different HMMs. But this will not be seen when
scoring the sequence against one HMM with the result that one will think
that the sequence is a “match”. To deal with this problem it is common to
use a scoring method called log-odds. In log-odds the resulting score is the
logarithm of the quotient between the likelihood of a sequence being gen-
erated by the HMM and the likelihood of it being generated by a random
model, usually refered to as a null model.

logodds(x) = log
LLscore

LLscorenull

One drawback with log-odds scoring is however that the significance of a
particular log-odds score is not necessarily the same for all HMMs, that is,
the distributions of the log-odds scores differ between HMMs. To deal with
this problem one can use yet another measurement method called P-value.
The P-value is obtained by treating the log-odds score S of a random se-
quence as a random variable and then estimating the density of maxN (S),
meaning the maximum of N independent random variables S. The P-value
for a query sequence with log-odds score s is then measured as the prob-
ability of getting a higher log-odds score by chance given the density of
maxN (S). Formally:

Pvalue(s) = Prob(maxN (S) ≥ s)

for some value of N . The distribution of maxN (S) can be estimated either
analytically or empirically. For local pairwise non-gapped alignments it has
been proven formally that it is extreme value distributed. As for gapped
pairwise alignments, multiple alignments and HMMs, no such formal proofs
exist, but given observed scores for both real and artificial data it is reason-
able to believe that maxN (S) is extreme value distributed in these cases as
well.
Closely related to the P-value is the E-value, which is a function of the

score s and the size of the database k, which calculates the expected number
of sequences in a database of size k consisting of random sequences which
would have a higher score than s.
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2.1.5 Prior distributions

A common problem with HMMs (and machine learning approaches in gen-
eral) is that if there is to little data to train the HMM on, it will become
overspecialized. If, for instance, all protein sequences in an HMM training
set has either A or L as their first residue, the probability of the trained
HMM emitting something other than A or L in the first state will be zero.
With a very large training set, this may be what one wants, but for a small
training set, it is probable that there may exist some sequence that belongs
to the family modeled by the HMM and does not start with A or L. In this
way such a sequence cannot be found.
The standard method used to account for this problem is to add some

kind of pseudo-counts when estimating how many times each alphabet sym-
bol is emitted in each state. The most simple, called simple pseudocount

method is to add one for each symbol of the alphabet, which means that
one pretends that all symbols have been emitted in each state at least once.

This corresponds to changing the updating formula eq′(σ
′) =

Eq′ (σ
′)

∑

σ
Eq′ (σ)

to

eq′(σ
′) =

Eq′ (σ
′)+1

∑

σ
(Eq′ (σ)+1)

. This takes care of the zero-probability problem but is

of course a very crude measurement. On the upside however, is the fact that
this method gives a natural decrease in importance to the pseudo-counts as
the size of the training set increases since the proportion of the pseudo-count
to the real count decreases. This feature is also kept in the more advanced
pseudo-count schemes.
A more sofisticated pseudo-count method is to incorporate more prior

knowledge of what we are trying to model into the pseudo-counts. For
amino acids for example, it is known that isoleucine is commonly found in
buried beta strand environments and that leucine and valine often substi-
tutes for it in those environments. So if our training data tells us that the
probability for some state emitting isoleucine is high, it would perhaps be a
good idea to give this state a fairly high probability of emitting leucine and
valine as well.
A simple way of incorporating more information into the pseudo-counts

is to change the 1 to a weight W and a proportion pσ given some kind

of background distribution, yielding eq′(σ
′) =

Eq′ (σ
′)+Wpσ′

∑

σ
(Eq′ (σ)+Wpσ)

. Although a

better approach, this is not enough to capture such correlations as described
above. What is needed is a method which adjusts the pseudo-counts after
the observed data. To achieve this, a method for using a mixture of Dirich-
let distributions as the prior was developed by Brown et al. [3]. The basic
idea is to have a set of different prior distributions α1Σ, . . . , α

L
Σ where alσ

corresponds to Wpσ above and then let the different distributions in the set
model different background environments, such as the buried beta strand
environment mentioned above. Given the real counts Eq(σ) the likelihood
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of each prior distribution is estimated and used to decide each prior distri-
bution’s contribution to the pseudo-count. Formally the updating formula
becomes

eq′(σ
′) =

∑

l

P (l|Eq′) ∗
Eq′(σ

′) + αlσ′
∑

σ(Eq′(σ) + αlσ)

where Eq′ is the vector of observed counts in q′ and P (l|Eq′) is calculated
using Bayes’ rule,

P (l|Eq′) =
plP (Eq′ |l)

∑L
i=1 pliP (Eq′ |li)

where pl are the prior probabilities for each mixture component and P (Eq′ |l)
is the probability of the data according to Dirichlet mixture l. Further details
and an explanation of how to derive P (Eq′ |l), can be found in Durbin et al.
[6] or Sjölander et al. [22].

2.2 Architectures of HMMs

For HMMs, the term architecture means what states there are, the possible
state transitions and to some extent the alphabet. The architecture of an
HMM is very important. It is the backbone that decides what is possible to
model, and it has great influence on the training algorithm, both regarding
speed and performance. As there are no simple rules regarding how to design
an HMM given a specific problem, HMM-design is as much a form of art as
it is science.
A simple example to show the importance of architecture is the following

HMM-comparison. Suppose two different HMM-parts, A and B (figures 1
and 2), were built to model the same set of sequences, which we assume to
be between two and five symbols long. A and B model the “gaps” in the
sequences in two different ways. In A there are transitions from each state to
all states to the right of that state. In B the circles represent silent states, i.e.
states that do not emit any symbol. Both these models “accept” the same
sequences (given that their alphabets are the same). However, model B has
the quality of having a number of transitions which is linear to the number
of states, while model A has a number of transitions which is in the order
of the square of the number of states. For larger models with about 200
states this fact will make models of type A impossible to use because both
training and searching will take too long. Model A on the other hand has
the possibility of having high probabilities for the transitions from state 1 to
state 5 and from state 2 to state 4, while having low transition probabilities
for transitions from 1 to 4 and from 2 to 5. This is a flexibility model B
does not have.
The above example shows a common tradeoff problem of flexibility versus

speed. Another thing to consider in a model is generality versus level of
detail. If there is prior information regarding the sequences that are to be
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Figure 1: Model A

Figure 2: Model B. Silent states are represented by squares.

modeled, which tells us that some regions of the sequences are more specific
to the set than others this should be reflected in the HMM-architecture. For
instance it might be a good idea to model the specific regions with many
states while the non-specific regions are modeled with fewer states. The
idea is to make the modeling of the non-specific regions general enough not
to pick up any irrelevant pattern that still might be found in the training
set. It may also be the case that different regions are equally characteristic
but have totally different properties. This too will have influence on the
architecture.
The TMHMM [17] is a good example of an HMM designed to model data

with known specific regions. TMHMM is designed to recognize membrane
proteins (proteins that go through one of the cell membranes). The most
characteristic regions of such proteins are the membrane regions themselves.
The amino acid composition in the membrane regions differs from the one on
the outside or the inside if the cell, since the chemical environment differs.
The key to detect whether a protein is a transmembrane protein or not
lies therefore in the modeling of the membrane regions. This is reflected
in the TMHMM architecture (figures 3 and 4) which is more specific for
these regions while the non-transmembrane (globular) regions (which not
uncommonly make up the larger part of the protein) are modeled in a very
simple way.
Another HMM architecture that must be mentioned in this context is the

profile HMM. This is an architecture invented by Anders Krogh for the spe-
cific task of modeling protein families [16]. Profile HMMs have proven to be
a very good tool for this task as they can turn a multiple sequence alignment

..........
11 2 3 4 5 6 7 8 22 23 24 25

Figure 3: The part of the TMHMM that models the transmembrane helix regions

19



Figure 4: The part of TMHMM that models the globular regions

into a position-specific scoring system suitable for searching large databases
for remotely homologue sequences. The profile HMM architecture (figure
5) corresponds closely to the concept of multiple sequence alignments since
it tries to model which residues of a protein sequence are conserved, which
have been inserted during evolution and where deletions have occured. For
this they have three different types of states, match-, insert-, and delete-
states. Match and insert states are regular states whereas delete states are
silent. Each path that produces a specific sequence represents a possible
alignment of that sequence onto the model, which can be conveniently tran-
scribed to a regular multiple sequence alignment notation using the labels
of the states in the path. There exist some variations to the standard profile
HMM architecture. For instance it is possible to not allow direct transitions
between delete states and insert states.
Another advantage of the profile HMMs is that the number of transitions

is proportional to the number of states, which makes the basic algorithms
(Viterbi, forward and backward) run in O(|Q| ∗ L) instead of O(|Q|2 ∗ L)
as for general HMMs. Profile HMMs belong to a subgroup of HMMs called
left-right models, which means that these models are possible to depict with
all transitions going from left to right.
A weekness with HMMs is that is that it is very difficult for them to model

dependencies in the data. For instance, in a 10 letter sequence the letter in
position 10 may be dependent on what letter there is in position 1, meaning
that the probability distribution of state number 10 in a linear HMM is
dependent on what letter is emitted in state 1. The only way to model
this with an HMM is to use a parallel architecture, i.e. several parallel
paths through the HMM that are in no contact with each other. But this
increases the number of states in the HMM exponentially to the number

Begin End

Figure 5: The standard architecture of a profile HMM. Circles represent match states,
diamonds represent insert states and squares represent delete states. The states labeled
“Begin” and “End” are the special start- and stop- states.
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of dependencies that one wishes to model. Therefore, this approch is not
possible to use except for a very small number of dependencies.

2.3 Profiles and multiple sequence alignments

Profiles and multiple sequence alignments are two common ways of repre-
senting multiple sequence information. Multiple sequence alignments are a
way of modeling the evolutionary process where residues of a protein se-
quence are mutated, deleted and inserted. What makes multiple sequence
alignments useful is the fact that when aligning two homologous protein se-
quences to each other they will exhibit more identity than when aligning two
non-homologous sequences. However, there is no unique method to find the
“best” alignment between two proteins. This is due to the fact that there are
different ways of assessing how much penalty should be given for gaps in the
alignment (inserts and deletions) and for non-matching (mutated) residues.
To estimate how probable it is for one amino acid to substitute for another
it is common to use a substitution matrix, which assigns a score to each pos-
sible amino acid mutation, usually positive for likely mutations and negative
for unlikely ones. What a likely mutation is may be estimated either from
the chemical properties of the amino acids or from empirical observations.
The total score of an alignment measures how likely it is for two sequences to
be related. Moreover, the problem of finding an optimal multiple sequence
alignment given a scoring method is proven to be NP-complete.

AHC---D--DEK--FAJSAJ

AHG---D--FJKAIGAFAAJ

IBGBCJGCCCGD--AMLKFJ

BHI---A--DLL--AAFAAJ

Figure 6: A small multiple sequence alignment of four sequences from a fictive alphabet.
’-’ is used to represent both insert- and delete- gaps. In some alignment notation inserts
and deletes are represented by separate symbols. Sequence 1 and 2 are close homologues.
Sequence 4 is a distant homologue to sequence 1 and 2. Sequence 3 is not related to the
other three.

Profiles are another way of representing multiple sequence information. A
profile is usually based on a multiple sequence alignment. For each position
in the alignment, one counts the number of times each amino acid appears
in that column and then finds the probability of seeing that amino acid in
the column by dividing the number of times it is seen with the size of the
column. This number is normalized by accounting for the number of gaps
that exist in the column and usually some sort of pseudocount scheme is
applied at the end. A profile is then defined as the series of probability
distributions one receives after applying this procedure to all columns in the
alignment.
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A: 0.50 0.00 0.00 0.00 0.00 0.00 0.25 ...

B: 0.25 0.25 0.00 1.00 0.00 0.00 0.00 ...

C: 0.00 0.00 0.25 0.00 1.00 0.00 0.00 ...

D: 0.00 0.00 0.00 0.00 0.00 0.00 0.50 ...

E: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

F: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ...

G: 0.00 0.00 0.50 0.00 0.00 0.00 0.25 ...

H: 0.00 0.75 0.00 0.00 0.00 0.00 0.00 ...

I: 0.25 0.00 0.25 0.00 0.00 0.00 0.00 ...

J: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 ...

Figure 7: The profile for the first seven residues of the alignment in figure 6.
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3 The modhmm package

3.1 Introduction

The basic part of the HMM package developed in this project, called modhmm,
consists of three subparts: modhmmc, modhmmt and modhmms. modhmmc
is a program for building an HMM by putting together small HMM parts,
called modules. modhmmt is a program for training an HMM constructed
in modhmmc on a set of training sequences. Finally modhmms is a program
for scoring sequences against HMMs.
The common idea for the modhmm package was to make it as general

as possible. The reason for this was to enable modhmm to be used in as
many areas of the sequence analysis field as possible. Therefore we tried
not to limit the architectural possibilities, allowing users to create HMMs of
arbitrary design, both regarding states, state transitions and alphabet. At
the same time the goal was to implement the training and search algorithms
as efficiently as possible, given the limiting factor of the programs’ generality.

3.2 Architecture - modhmmc

modhmmc is the program for designing an HMM. It lets the user specify
alphabet, states, transitions, relations between transitions, relations between
states and if any files containing prior distributions are to be associated with
the HMM. So far the functionality of modhmmc has been given priority over
the user interaction. The result of this is that the program allows a more
detailed input than it is possible for a user to specify. This will be corrected
later with the addition of a more advanced user interface, which however lies
outside the scope of this project. What is described below is the functionality
of the program.
The alphabet of a particular HMM is specified as a set of letters, where

each letter is a word of up to 4 characters. The reason for allowing letters
to consist of more than one symbol is to make more specialized alphabets
possible. An example is an alphabet of the 20 amino acids, where each
amino acid is split into several letters depending on which environment it
exists in. A possible set of environments is cell-membrane, cell-inside and
cell-outside. A possible alphabet is then ’Ai’, ’Ao’, ’Am’, ’Ci’, ’Co’ , ’Cm’
and so on.
The states of an HMM are specified as a collection of state modules with

transitions between them. A module is a set of states which are intercon-
nected in a predecided fashion. The idea behind modules is to make the
creation of large HMMs easier. HMMs with several hundred states are not
uncommon in sequence analysis and specifying each and every state and
transition in such a case is impractical. modhmmc currently has 6 module
types to choose from: singlenode, singleloop, forward, cluster, profile9 and
profile7 (figures 8 to 13). The user specifies what modules to use and how
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to interconnect them. modhmmc allows for the creation of both regular and
silent states. Which states are regular and which are silent may be specified
entirely by the user, but default settings are built into the modules. The
modhmm package also implements start- and stop- states as a necessary
part of all HMMs. Loops consisting entirely of silent nodes are not allowed.

The initial (before training) probabilities of all transitions and emissions
may also be specified entirely by the user. However, transition probabilities
are set by default inside the modules to correspond to the intrinsic properties
of that module (see descriptions of the modules). Transition probabilities
between modules are by default set uniformly, so that the probabilities of
going from a module to another are equally distributed among all its neigh-
bours. Emission probabilities for each state are either set manually by the
user or according to a chosen distribution. The choices are to set the values
uniformly, randomly or to zero for all letters, which creates a silent state.
modhmmc also has the possibility of connecting the emission probabilities
of a set of states so that during training, the emission probabilities for all
letters remain the same inbetween these states, i.e. the probabilities them-
selves may change, but the probability of emitting each letter is the same
for all the connected states. There is also a possibility of connecting a set
of states to make them be seen as “the same state” when constructing an
alignment from the HMM. With this feature it is possible to have parallel
architectures (figure 14) and still make it possible to align letters emitted in
different branches to the same column.

Singlenode The singlenode module is the most basic module of modhmmc.
It consists of only one state, regular by default, but the user may specify it
as silent. All other modules may be built using collections of singlenodes.
The singlenode has no input parameters.

Singleloop The singleloop module consists of one state with a transition
to itself. It is necessarily regular, since no loops of silent states are allowed.
The singleloop has one input parameter. The user specifies the expected
length of the loop, which sets the loop transition probability to ptrans =

e
ln0.5
l , where l is the specified loop length. This results in the probability of

a loop length longer than or equal to l being equal to the probability of a
loop length shorter than l, that is, l is the expected median loop length.

Figure 8: Singlenode module
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Figure 9: Singleloop module

..........
1

Figure 10: Forward module

Figure 11: Cluster module

Figure 12: Standard profile hmm module, profile9

Figure 13: Profile hmm module with no direct connections between insert states and
delete states, profile7

1a 2a 3a

1b 2b 3b

Figure 14: Parallel HMM-architecture example. Connecting each a-state with its b-
counterpart may in this case give multiple sequence alignments which better represent the
underlying data.
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Forward The forward module is a set of states connected in a straight
line, indexed 1 to n. All states are regular by default. The two input
parameters (m,n) specify the shortest and longest possible routes through
the module. The number of states in the module is equal to the length of
the longest possible route n. For all states with index m− 1 to n− 2 there
is a transition to the last state. The transition probabilities are set so that
the total probability is equal for all possible paths through the module. Any
state that connects to this module will connect to the state with index 1,
and all outgoing connections from this module go from the state with index
n.

Cluster The cluster module is a fully interconnected set of states. Every
state has a transition to every other state. The transition probabilities are
evenly distributed by default. All states are regular. The input parameter
is the number of states. Incoming transitions connect to all states, and
outgoing connections go from all states.

Profile9 The profile9 module is equal to the standard profile-HMM ar-
chitecture (section 2.2). The input parameter specifies the length of the
module, i.e. the number of match states. Incoming transitions connect to
the first state of each type (delete, insert, match), while outgoing transi-
tions go from the last state of each type. The input parameters specify
the expected gap length and the expected insert length. The expected gap
length sets the transition probability of the delete→delete transitions ac-
cording to the same formula as for the singleloop module. The expected
insert length sets the insert→insert loop transition in the same fashion.
As for the probabilities of opening up a gap or an insert these probabilities
(match→delete and match→insert transitions) may be specified by the user,
but are otherwise set by default to 0.025 in an ad hoc fashion, leaving 0.95
as the probability for the match→match transitions. The probabilities of
the delete→match and the delete→insert transitions (which depend on the
expected gap length parameter) are set so that pd→m = 0.95∗(1−pd→d) and
pd→i = 0.05∗(1−pd→d). According to the same principle, the insert→match
and the insert→delete transitions are set to pi→m = 0.95 ∗ (1 − pi→i) and
pi→d = 0.05 ∗ (1− pi→i).

Profile7 The profile7 module is equal to the profile9 module in every way,
except for it not having any delete→insert or insert→delete transitions.

3.3 Training - modhmmt

The modhmm-package program for training an HMM is modhmmt. modhmmt
implements four variations of the Baum-Welch traning algorithm: standard,
annealing, random-walk and momentum. It is possible to train an HMM

26



either on a set of regular sequences or on a multiple sequence alignment.
The user has the option of using prior information in the form of Dirichlet
priors for the emissions and simple pseudocounts for the transitions.

Baum-Welch standard This is a straight forward implementation of the
Baum-Welch algorithm as described in the theory section (see section 2.1.3).
By only examinining existing transitions with non zero probabilities in the
forward and backward recusion steps the effective time complexity for these
algorithms is reduced to O(T ∗L), where T is the number of transitions. In
the worst case, this is of course equal to O(|Q|2 ∗ L).
Input training data may either be a set of sequences or a multiple sequence

alignment. When using ordinary sequences, the algorithm works exactly as
described in the theory section. When using a multiple sequence alignment
however, there are some slight modifications. Since the idea of training
on an alignment suggests that all letters belonging to the same column
should be produced in the same state, each “letter” of the alignment is
a probability distribution representing a column. This leads to a slightly
different recursion step for the forward and backward algorithms

fq′(i+ 1) = emsa
q′ (xmsa

i+1 )
∑

q

fq(i)aqq′ .

and
bq(i) =

∑

q′

bq′(i+ 1) ∗ aqq′ ∗ e
msa
q′ (xmsa

i+1 )

where emsa represents a formula for calculating the probability for the col-
umn xmsa to be produced in a state q. In modhmmt emsa is implemented
in two ways. The first is the dot product

emsa
q (xmsa

i ) =
∑

σ

eq(σj) ∗ x
msa
i (σj).

This formula is easy to use and only increases the time complexity of the
forward and backward algorithms by a factor the size of the alphabet, which
is usually compensated for since multiple sequence alignment training is
performed using only one sequence. The probabilistic interpretation of this
score is that it represents the probability that the same letter is drawn if
drawing independently from both the state- and the profile- distributions.
The second implementation of emsa is using a variant of the so called log-

average score, which originally is

scorelogaverage(α, β) = log

|Σ|
∑

i=1

|Σ|
∑

j=1

αiβj
prel(i, j)

pipj
,

where α and β are the two probability distributions, pi is the background
amino acid distribution for amino acid i and prel is a probability distribution
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of “related” amino acid pairs. For details, please see von Öhsen et. al. [25]
[26]. To suit the strict probability environment of HMM scores, this scoring
method ha been modified slightly in the modhmm implementation.

emsa
q (xmsa

i ) =

|Σ|
∑

j=1

|Σ|
∑

k=1

eq(σj) ∗ x
msa
i (σk) ∗ submtx(j, k).

Here, submtx(j, k) is an a priori probability that amino acids j and k are
related derived from a user specified substitution matrix of the BLOSUM
series [12]. Recent results indicate that this method performs better than
the dotproduct [25] [26]. However, it is at least a factor |Σ| slower, since the
single sum is replaced by a double sum.

Baum-Welch random walk The random walk optimization of the Baum-
Welch algorithm (originally developed by Richard Hughey and Anders Krogh
[13]) tries to avoid getting stuck in local maxima by generating a number
R of random sequences from the initial model. Given a noise level Ni, each
of the R paths through the model adds a value to the respective Aqq′ and
Eq(σ) parameters. The N parameter is decreased for each iteration of the
algorithm, either linearly or exponentially.
The idea is to run the algorithm several times, finishing in different local

maxima, choosing the result model which has the highest likelihood. This
is an ad hoc - optimization method which has been shown to work well in
practice [13].

Baum-Welch annealing The annealing optimization method uses a vari-
ant of simulated annealing to help overcome local maxima. It has a tem-
perature T and a cooling factor c. For each iteration, each Aqq′ and Eq(σ)
value is scrambled by multiplying it with a random number between 1

T
and

T . After each iteration the temperature is decreased by multiplying it with
the cooling factor.
Like random walk, annealing is used to optimize the performance of an

HMM. It may also be run several times on the same training data, letting
the user choose the result model with the highest likelihood.

Baum-Welch momentum The third optimization method builds on a
concept borrowed from artificial neural networks which has been adapted to
fit HMMs. The basic idea is to let each parameter (transition and emission
probabilities) keep a momentum from how it updated in one iteration to
the next iteration. This will enhance the size of its update if it continues to
change in the same direction. Otherwise it will reduce it. If the momentum
term is larger than a move in the opposite direction, the parameter will
continue to move in the momentum direction. Momentum is used both as
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a speed optimizer and as a mean of avoiding local maxima. The size of
the momentum term is set as a fraction of the size of the update in the
last iteration. After adding the momentum terms, all updated values are
normalized to make the probability sums equal to 1.0.

3.4 Scoring - modhmms

modhmms is the program for scoring a sequence against an HMM built
by modhmm. Scoring can be done using either the forward- or Viterbi-
algorithm. The score obtained is a log likelihood score which may be turned
into a log odds score using either a user specified- or default- null model. The
default null model consists of a singleloop module with equal probabilities for
all letters of the alphabet and a loop transition probability that corresponds
to the length of the sequences (the average length if there are multiple
sequences) that are being scored against the HMM.
It is possible to use either regular sequences or multiple sequence align-

ments as input to modhmms. A multiple sequence alignment “letter” is a
probability distribution over the alphabet representing the distribution of
a column in the same way as for alignment training. The user may choose
what columns of an alignment should be used in the search. The alternatives
are to use either the columns corresponding to any of the sequences that are
part of the alignment (i.e. the columns where this particular sequence has a
non gap character) or to use all alignment columns. For alignment scoring
it is also possible to adjust the column distributions using Dirichlet priors.
When calculating the emission probabilities of a column, one may use ei-
ther the dotproduct- or the logaverage- methods described in the previous
section.
The time complexity for scoring a sequence is equal to the time complexity

for running the forward- or Viterbi- algorithm, that is O(|Q2|∗L) for regular
sequences, O(|Q2|∗L∗|Σ|) for alignments using the dotproduct and O(|Q2|∗
L ∗ |Σ|2) for alignments using the log-average, optimized to O(T ∗L), O(T ∗
L ∗ |Σ|) and O(T ∗ L ∗ |Σ|2) respectively.
When scoring multiple sequences against multiple HMMs one can use ei-

ther the sequences or the HMMs as the “query sequences”. Using the HMMs
as queries results in an output which for each HMM shows a list containing
the scores for all sequences and vice versa.

29



4 Profile-profile comparison

4.1 Introduction

The goal of this study was to evaluate if using multiple sequence information
in the target sequences improves the structure prediction performance of pro-
file HMMs compared to the standard method of using single sequences. Re-
cent results using other profile-profile methods6 ([14] [24] [25] [26]) show an
overall increase in finding remotely homologous sequences (i.e. homologous
sequences with less than approximately 20% sequence similarity) compared
to methods using multiple sequence information only in the query sequence.
Such results suggest that it is possible to achieve a similar improvement with
HMMs.

4.2 Methods

Data set The SCOP (Structural Classification of Proteins) database [19]
is a hierarchical database for storing information on proteins of known struc-
ture. Each protein in SCOP belongs to a family, a superfamily and a fold.
Fold is the highest level in the hierarchy, followed by superfamily and fam-
ily, that is, a fold can consist of many superfamilies and a superfamily may
consist of many families. Proteins belonging to the same family are close
homologues (high sequence identity) while proteins related only on the su-
perfamily level are more distantly related (medium to low sequence identity),
but still homologues. Proteins related only on the fold level may or may not
be homologues. SCOP also divides proteins into eleven different fold classes,
which is one step above fold in the hierarchy.
For this experiment, a randomly selected data set from the fold class a of

SCOP 1.57 consisting of 484 sequences was used. PSI-BLAST [2] was used to
create multiple sequence alignments of these 484 sequences. The threshold
for including a sequence in the alignment was set at E-value = 10−3. 17
sequences were filtered out at this stage since they did not produce any
alignment. The remaining 467 were kept. The number of sequences in the
alignments ranged from 2 to 579. The average number of sequences per
alignment was 136. 72 sequences had alignments of fewer than 10 sequences
and 126 sequences had alignments of fewer than 25 sequences.

HMMs An HMM was built from each of the 467 alignments in the fol-
lowing way:

1. An untrained HMM was created using modhmmc. The architecture
was a single profile7-module (figure 15) with length equal to the length
of the template sequence of the alignment.

6Profile-profile is a common term for sequence comparison methods which use multiple
sequence information both in the target- and query- sequence.
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2. The HMM was trained using the standard Baum-Welch algorithm,
where the input-sequence was a profile using the columns from the
alignment corresponding to the positions where the template sequence
had a non-gap character.

3. Each delete→delete probability was set to the share of the already
started gaps that continued over this column, adjusted with a simple
pseudocount, ddi =

gapscont+1
gapscont+gapsending+2

. The delete→match probabil-

ity was set to dmi = 1− ddi.

4. The match→match-, match→delete- and match→insert- probabilities
were calculated using the share of inserts and deletes started between
two template sequence columns (where the template sequence had non
gap characters), adjusted with a simple pseudocount:

mdi =
gapsstarting + 1

matchescont + insertsstarting + gapsstarting + 3
,

mii =
insertsstarting + 1

matchescont + insertsstarting + gapsstarting + 3
,

mmi = 1− (mdi +mii).

5. For the insert states where inserts occur in the alignment (i.e. for
the states where the corresponding template sequence columns are
non adjacent), insert→insert- and insert→match- probabilities were
calulated using the average length of the inserts between two template
sequence columns in the following way,

iii =

∑

allinserts(insertlength− 1) + 1
∑

allinserts(insertlength− 1) + nrofinserts+ 2
,

and
imi = 1− iii.

6. For all other insert states, iii = 0.5 and imi = 0.5.

Begin End

Figure 15: Circles represent match states, diamonds represent insert states and squares
represent delete states. The states labeled “Begin” and “End” are the special start- and
stop- states.
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Test procedure Since the object of this experiment was to determine
whether or not multiple sequence information in the target sequence im-
proves structure prediction performance for HMMs, the 467 (query) HMMs
were scored against the 467 (target) sequences in two ways. The first, called
msaHMM, uses the multiple sequence information in the target sequence
alignments. The second, called sinHMM, just scores the target sequences
themselves. The scoring method was log-odds (section 2.1.4) on both occa-
sions. When scoring the alignments, the dotproduct method (section 3.3)
was used.
To compare the results with the current state of the art for profile HMMs,

the sequences were also scored using hmmer-2.1.17. hmmer-HMMs were
built for all sequences and scored against the 467 sequences. These results
are headlined with “hmmer”. hmmer uses a regular scoring method, i.e.
without multiple sequence information in the target sequences.

Evaluation method Results were evaluated in two ways. Both the share
of correctly classified sequences and the share of true positives compared to
the share of false positives was measured.
The definition of correct classification used on the family level was the

following: A sequence s1 is classified to the correct fold if the sequence
with the highest score when compared to s1 is from the same family as s1.
The score for s1 itself is disregarded. In the same way, a sequence s2 was
defined to be correctly classified on the super family level if the sequence
with the highest score was from the same super family. Here the scores
for the sequence itself and all sequences from the same family as s2 were
disregarded. The definition of correct classification on the fold level was
done accordingly.
The share of true positives on the family level was defined as the share

of sequences from the same family as the sequence scored against that were
found given a certain threshold score value, and analogous for false positives.
Sequences from the correct fold, but not from the same family were counted
as neither positives nor negatives. The share of true positives compared to
the share of false positives can be said to represent a ratio between how
many sequences were correctly classified and how many that were falsely
classified to a certain fold, given a specific threshold value. The definition for
the superfamily and family levels were done accordingly, again disregarding
true positives that belong to a lower category in the hierarchy, e.g. on the
super family level true positives belonging to the same family as the sequence
scored against were disregarded, as were sequences from the correct fold but
from a different superfamily.

7http://hmmer.wustl.edu/
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4.3 Results

Correct classification As can be seen in table 1, using multiple sequence
information clearly improves distant homology detection. i.e. detection on
the super-family- and fold- levels. Furthermore, the results show that the
msaHMM method performs better also for close homology detection, for
which all methods perform well. The total category measures the total
number of correctly classified proteins, calculated as a weighted average
of the scores for the three sub categories. This category also includes the
17 sequences for which no alignment was found, i.e. the theoretical max
score for this category was 96.5%. It also looks as if the modhmm package
performance is on par with hmmer as the results for the comparable scoring
methods sinHMM and hmmer are roughly the same for all three categories.

Share correct

Category sinHMM msaHMM hmmer

family 88.0% 89.5% 88.9%
superfamily 41.5% 49.0% 38.8%

fold 10.0% 21.8% 12.9%
total 71.8% 74.8% 72.7 %

Table 1: The share of correctly classified protein sequences

True positives vs. false Positives As for the share correct-classification,
true positives vs. false positives (figures 16, 17, 18 and table 2) show that dis-
tant homology detection as well as close homology detection clearly improves
when using multiple sequence information in the target sequences. The re-
sults for sinHMM are slightly lower than the results for hmmer here, but
still on the same level. The shapes of the curves suggest that the msaHMM
method is good at improving the scores for related sequences which already
score fairly well using sinHMM or hmmer, but seems to give even lower
scores for the related sequences with initially low scores.

True positives at 1% false

Category sinHMM msaHMM hmmer

family 87.3% 93.2% 91.1%
superfamily 30.6% 42.6% 32.4%

fold 4.0% 8.1% 3.8%

Table 2: The share of true positives found at 1% false positives found
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Figure 16: The true positives (y-axis) vs. false positives (x-axis) diagram for sinHMM,
msaHMM and hmmer on the family level
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Figure 17: The true positives (y-axis) vs. false positives (x-axis) diagram for sinHMM,
msaHMM and hmmer on the superfamily level
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Figure 18: The true positives (y-axis) vs. false positives (x-axis) diagram for sinHMM,
msaHMM and hmmer on the fold level.
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5 Discussion

5.1 modhmm package

The primary goal of this project was to implement a package for constructing
and training HMMs as well as scoring sequences aginst HMMs. To accom-
plish this, three programs were built, modhmmc (construction), modhmmt
(training) and modhmms (scoring). The three basic algorithms forward,
backward and Viterbi, as well as the standard training algorithm, Baum-
Welch, were implemented to support an arbitrary HMM-architecture. The
possibility of using prior information was incorporated into the training-
and scoring- algorithms. In addition to this, the possibility of training and
scoring using multiple sequence alignments as input was implemented.
Judging from the profile-profile experiment and other tests, the modhmm

package seems to work well. As indicated by the results from the profile-
profile test, modhmm seems to perform on par with hmmer8. A slight
problem with modhmm is the speed of modhmms and modhmmt programs.
Comparisons with hmmer during the profile-profile experiment show that
modhmm is approximately 4 times slower than hmmer. To some extent this
is to be expected, since hmmer is a very fast program customized for profile-
hmms and modhmm is more general, which prohibits certain “shortcuts” in
the algorithms. However, modhmm would need to be optimized in order for
it to be useful for large database searches. As mentioned earlier, the user
interface of modhmmc is also rudimentary and needs further development.
One possibility is to add a graphical user interface. Furthermore, no real
evaluation of the optimization methods for the training algorithm has been
done.

5.2 Profile-profile comparison

The second goal of this project was to test whether including multiple se-
quence information in both query- and target- sequences improves the fold
recognition of HMMs compared to using multiple sequence information only
in the query. The results show that this clearly is the case. Especially remote
homology detection is improved using this method. Overall, the results for
msaHMM (the profile-profile method) at the superfamily- and fold- levels
are good. 49.0% and 21.8% respectively of correctly classified sequences are
at the same level as the top methods, although it is not really possible to
make such comparisons over different test sets. It would be interesting to
try the msaHMM method on a larger and more diverse test set and also
to compare the results with the scores of other methods. For this test set,
the 21.8% on the fold level is probably raised some due to the composition
and size of the test set. The score of a sequence related on the fold level is

8http://hmmer.wustl.edu/
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usually not that much higher than the score of a non related sequence. With
a larger and more diverse test set, the probability of getting a score from
a random sequence which is higher than the score for the best scoring fold
level-related sequence increases. This problem could also affect the results
on the superfamily- and family- levels slightly, but most certainly not to a
significant degree, since the scores for more closely related sequences usually
differ more from the scores of the unrelated sequences.
Some possible improvements to the results of msaHMM and HMM are

also possible. For instance, it may be better to use the log average scoring
method instead of the dot product. The drawback with this is the speed
decrease. Another possible improvement would be to use the information
from the sequence alignments to set the emission probabilities of the insert
states. In the experiment performed here, training was done without using
these columns of the alignments, resulting in emission probabilities for the
insert states more or less equal to the Dirichlet background distribution.
Furthermore, all scoring in this experiment was done globally, i.e. a whole
sequence was scored against a whole HMM. It is possible to change the
profile-HMM architecture, as well as the alignments to enable both global-
local and local-local scoring. Since local scoring is less affected by differences
in sequence lengths than global scoring, this would probably lead to slightly
better and more stable results.
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