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Abstract

Major histocompatibility complex (MHC) molecules play a critical role in initiating and

regulation immune responses. Helper T lymphocytes can recognize a complex formed between a

MHC class II molecule and an antigenic peptide. Determining which peptides bind to a specific

MHC molecule is fundamental to understanding the basis of immunity, and for the development

of vaccines and immunotherapeutics for autoimmune diseases and cancer.

This Master’s thesis investigates the usage of Support Vector Machine for MHC class II

binding peptide prediction. For each allele a model cluster (SVMHCII) which contains 20 models

was created. The training data wass obtained from the public database MHCPEP. For the 26

different alleles that contain enough data we obtained average Mc coefficients of 0.57-0.74. A

comparison between SVMHCII and a public MHC II predictor ProPred is made. For 10 out

of 11 alleles SVMHCII perform better than ProPred. Generally, these results indicate that

SVMHCII has a strong ability for MHC class II binding prediction.

2



CONTENTS

Contents

1 Introduction 4

2 Background and Theory 8
2.1 Immune system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 MHC Cells involved in acquired immunity and specific recognition . . . . . . 8
2.2 Pattern recognition and machine learning . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Separable patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Material and Methods 15
3.1 MHC peptide databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 MHCPEP: MHC binding database . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 ENSEMBLE: non-binding database . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 SVMlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 SVM learn and SVM classify . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Parameters in SVMlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Algorithm for prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Preprocessing the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Model establishment and cluster . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.3 The prediction using model clusters . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Comparison with ProPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Test-set validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Results and Discussion 22
4.1 Results from Model clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Comparison with ProPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Test-set validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions and future steps 24
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Future development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Acknowledgments 26

7 References 27

3



1 INTRODUCTION

1 Introduction

The process of binding between Major Histocompatibility Complex (MHC) and the peptides plays

an important role in the immune system. To predict the binding ability of peptides to a specific

MHC molecule is fundamental to understanding the basis of immunity, and for the development

of vaccines and amino-therapeutics for autoimmune disease and cancer. The immune system is a

defense system that is present in vertebrates to protect them from invading pathogens. One of the

most important parts of the immune system is the specific recognition of antigens bound to major

Histocompatibility molecules carried out by T-cells.

There is a natural turnover of proteins in living cells, which means that they are hydrolyzed

into smaller peptide fragments. Some of these peptides bind to MHC molecules and travel to the

cell surface, where the MHC-peptide complex can be recognized by T-cell receptors (TCRs) on

T-cells. The presentation of MHC-peptide complexes is a way to monitor what is going on in the

body. If there is no foreign antigen in the body, MHC presents only self-peptides and hence there

is no activation of T-cells. On the other hand, if the peptide presented by MHC is, for example, a

viral protein, T-cells can be activated.

Cytotoxic T-cells recognize peptides bound to MHC molecules. These MHC-peptide complexes

are potential tools for the diagnosis and control of pathogens and cancer. One major problem is

to find out what peptides from a protein that actually bind to a MHC molecule. Suggestions have

been made that only 1 in 100-200 possible binders actually do bind. A reliable prediction method

that reduces the number of candidate binders is therefore useful. This paper presents a method

for predicting peptides that bind MHC class II using Support Vector Machines. Sequence data of

peptides that bind different MHC types were extracted from the public database MHCPEP.

The prediction of MHC II binding peptides is much more difficult than that of MHC I because

of the difference of the structures of MHC I and MHC II. Figure 1 shows the main difference of

MHC I and II peptides binding. Among the difficulties that must be addressed are: (i) the variable

lengths of reported binding peptides; (ii) the undetermined core regions for individual peptides; (iii)

the number of amino acids permissible as primary anchors; (iv) the range of experimental methods

for assaying of peptide binding; (v) the experimental and reporting errors.

Prediction of peptides that bind to MHC can be divided into two groups: sequence based and

structure based. Peptide binding to MHC is allele specific. By looking at frequencies of different

amino acids in different positions for a large number of known binders, sequence motifs can be seen.
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1 INTRODUCTION

Figure 1: The mainly difference in structure between MHC I and MHC II. For MHC I (left)the both ends
of binding groove are closed while for MHC II (right)they are open.

An example of a sequence motif might be the one seen for peptides that bind to a MHC I molecule

HLA-A0201. It is very common that peptides that bind to this MHC molecule have a lysine in

position 2 and a valine in position 9, the length is often 9 amino acids. Sequence motifs like this

can be used as a simple prediction method [1]. More information can also be added to create a

scoring matrix, in which every column correspond to a certain position in the peptide and the rows

corresponds to the amino acids. Another approach for prediction is based on structural information

about MHC-peptide complexes and evaluates how well a new peptide fits in the binding groove

of a MHC molecule. A new peptide is threaded through a structural template to obtain a rough

estimate of the binding energy. The energy estimation is based on the interactions seen in a solved

crystal structure.

Prediction has also been made by using machine learning approaches such as artificial neural

networks and hidden Markov models. The main feature of machine learning in this case is that

they seem to reduce the number of positive false results (FP) compared to motif based methods.

The importance of secondary anchors and deleterious residues at non-conserved regions places

limitations on the usefulness of motifs.

The prediction of MHC class II-binding peptides is a more difficult classification problem than

the prediction of class I molecules. The greater variability in length of MHC class II-binding

peptides and their less well-characterized motifs make their alignment a difficult task, particularly

as the vast majority contain more than one hydrophobic residue, allowing for multiple possible

alignments. For instance it has been observed that application of a standard multiple alignment

method, such as GCG Pileup (http://www.gcg.com/), failed to produce a useful alignment [1]. In
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1 INTRODUCTION

these alignments a nonamer core was not preserved, nor would the sequences align relative to the

primary anchors.

Anyhow, several methods have been used to predict MHC class II binding peptides, including

those based on binding motifs, quantitative matrices and artificial neural networks (ANNs). Binding

motifs specify which residues at given positions within the peptide are necessary or favorable for

binding to a specific MHC molecule. Motifs for MHC class I molecules are relatively well defined.

Nijman and co-workers [2] compared experimental results for binding to HLA-A2.1 with those

obtained by motif-based prediction. Of 35 predicted binding peptides, they found that only 15

(43%) actually bound. With the exception of certain molecules [3], specific binding motifs for

MHC class II molecules are less well defined [1]. Quantitative matrices are essentially refined

binding motifs. They provide coefficients for each amino acid/position that can be used to calculate

scores predictive of binding. The assumptions are that each residue contributes independently

of other residues to binding and when located at a given position contributes the same amount

to binding even within different sequences. Quantitative matrices have been defined for class

II molecules [4]. ANNs are connectionist models commonly used for classification and pattern

recognition tasks. ANNs used for the prediction of MHC class II binding peptides have achieved

both positive and negative predictive values of nearly 80% [5]. Because of ambiguities resulting from

the variable length of reported binders and the uncertain location of their core regions, peptides

tested experimentally for binding and used as inputs to train an ANN require preprocessing by

alignment relative to their binding anchors. An example is Mallios [6] who use an iterative stepwise

discriminant analysis meta-algorithm to derive a quantitative motif for MHC class II. MHC class

II-binding peptides also have more degenerate motifs. However, growing evidence supports the

observation by Hammer et al. [3] that MHC class II-binding peptides contain a single primary

anchor at the amino terminus, which is a hydrophobic amino acid (Y, F, W, I, V, L or M).

Each of the described prediction methods has its advantages and drawbacks. Binding motifs

encode the most important rules of peptide/MHC interaction, but do not generalize well. Quanti-

tative matrices can predict large subsets of binding peptides reasonably well, but cannot deal with

non-linearity within data and may miss distinct subsets of binders. Also, quantitative matrices are

not adaptive and self-learning, so that integration of new data usually requires redesigning of the

matrix. ANNs can deal with non-linearity and are adaptive and self-learning, but require a large

amount of preprocessed data. An ideal prediction method would integrate the strengths of these
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1 INTRODUCTION

individual methods while minimizing their disadvantages. We have therefore developed SVMHCII

based on the work of Dönnes and Elofsson [7], a hybrid method for the prediction of peptides that

bind to MHC class II molecules. It utilizes: (i) local alignment for preprocessing; (ii) a Support Vec-

tor Machine to derive models; (iii) the utilization of 20 models as a model cluster. These clusters are

constructed for the 26 MHC class II alleles whose binding peptides in the database MHCPEP are

sufficient to train the SVM. Further, a comparison between a public available predictor, ProPred,

and SVMHCII is made.
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2 BACKGROUND AND THEORY

2 Background and Theory

2.1 Immune system

The immune system has evolved in vertebrates to protect them from invading pathogenic microor-

ganisms and cancer. It is extremely adaptive and can generate a vast number of cells and molecules

used to recognize and kill a limitless variety of foreign invaders. The immune system can be divided

into the two interrelated parts, recognition and response. A foreign molecule can be distinguished

from other foreign and self molecules by small chemical differences. Once the foreign molecule is

recognized, an appropriate immune response can be raised.

2.1.1 MHC Cells involved in acquired immunity and specific recognition

There are three major cell types involved in acquired immunity. Two of these cells develop from a

common ancestor and they are the B- and T lymphocytes. B cells mature in the bone marrow and

T cells in the thymus. Antigen presenting cells (APC), such as macrophages and dendritic cells,

are the third cell type.

The main feature of B and T cells is their specificity to antigen via antigen binding surface

receptors. They are also responsible for other important features of immunology such as diversity,

memory and self/non-self recognition. The antigen binding surface receptor of B lymphocytes is

membrane bound antibodies. The T-cell receptor can only recognize antigen in conjugation with

certain cell-membrane proteins known as the major histocompatibility complex (MHC) molecules.

When a naive T-cell becomes activated by an antigen associated with a MHC molecule it differen-

tiate into memory T-cells and various effector T cells.

The T Lymphocytes can be divided into two major groups, T-helper (Th) and T cytotoxic(Tc)

cells. The distinction of the two subtypes is made by glycoproteins on their surface known as CD4

and CD8. T cells that have CD4 on their surface generally function as Th cells and those that

have CD8 as Tc cells. An activated Tc cell may under the right stimulation, i.e. recognition of an

antigen-MHC I molecule, proliferate and differentiate into a cytotoxic T lymphocyte (CTL). CTL’s

monitor the body for tumor cells and virus infected cells. They do not secrete much cytokines (im-

munological ”communication” molecules), instead they can kill cells with their cytotoxic mediators.

Th cells become activated when they interact with cells displaying MHC II molecules complexed

with antigen. They secrete various cytokines as well as growth factors important in the activation

of B cells.

8



2 BACKGROUND AND THEORY

APC on the other hand have no such antigen-specific receptors. Their function is to process

and present antigens to specific T cell receptors (TCR).(The two functional molecules on APC used

for antigen presentation are called MHC I and MHC II. The processed antigen is non-covalently

bound to these molecules. The subset of T cells that are activated by MHC I molecules are the

cytotoxic T cells. MHC II are present on APC and activate T helper cells.) The most important

function of APC is to activate Th cells. Th cells are important in directing immune responses and

therefore their activation must be carefully regulated. This activation of Th cells is as mentioned

above carried out by antigen-MHC II molecules. The process is shown in figure 2.

2.2 Pattern recognition and machine learning

The term pattern recognition includes a wide range of information processing problems of great

practical significance, from speech recognition and the classification of handwritten characters, to

fault detection in machinery and medical diagnosis. [8]

2.2.1 Separable patterns

The best way to introduce separable patterns is to give a simple example. Let us start off with

a hypothesis that men have bigger feet and weigh more than women. If this is true it should be

possible to predict weather a person is a man or a woman, given the weight and shoe size. Table 1

shows weight, shoe size and gender for ten persons. The data in Table 1 is plotted in Figure 3,

showing females marked ’+’ and men marked ’*’. As can be seen in Figure 3 a line can be drawn

to separate the data points into two groups, one for women and one for men. Since the plot is two

dimensional there is a line separating the two groups. In a dimension of order N, the problem is to

find a hyperplane in N-1 dimensions that separate the groups.
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2 BACKGROUND AND THEORY

Figure 2: Degradation and transport of antigens that bind major histocompatibility complex (MHC) class
II molecules. (a) In an antigen-presenting cell (APC), newly synthesized MHC class II molecules bind the
invariant chain (IC), which prevents binding of peptides that are present in the endoplasmic reticulum (ER).
(b) The IC allows transport of MHC class II molecules from the ER into the Golgi apparatus to acidified
endosomes. (c) Endosomes contain peptides that are derived from either resident pathogens (e.g. bacteria) or
(d) engulfed extracellular proteins (or pathogens) (e) in the phagosomes. (f) Proteases within the endosome
degrade proteins into peptides. (g) The endosome fuses with the Golgi to form the trans-Golgi. (h) Here, the
IC is cleaved and released from the MHC class II molecule. This allows the binding of peptides within the
endosome to the peptide-binding cleft of the MHC molecules. An MHC-class-II-binding molecule (HLA-DM)
binds to MHC class II molecules to facilitate the release of the IC (not shown). (i) The MHC class II-peptide
complex is then transported to the cell surface of the APC for (j) recognition by the T-cell receptor (TCR)
of (CD4+) T-helper lymphocytes (THLs) and (k) intracellular signaling for activation.
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2 BACKGROUND AND THEORY

Figure 3: An example of weight and shoe size plotted for 10 persons. As can be seen in the figure, a line
can be drawn to separate men from women

Weight Shoe size Gender
67 38 F
73 41 M
87 42 M
79 42 M
84 44 M
78 40 F
107 46 M
56 37 F
55 38 F
82 41 F

Table 1: Weight, shoe size and gender for 10 different persons.

2.2.2 Machine Learning

The term Machine Learning is generally used for automatic computing procedures based on logical

or binary operations, that learn a task from a series of examples. When computers are used

for solving practical problems, the required output from a given input can usually be described

explicitly. A programmers task is here to set up a number of rules so that a given input gives the

right output. The problem arises when very complex systems are to be analyzed. If no general

rules are given it might be impossible to compute the desired output from a given input. An

alternative is then to learn the input/output functionality from examples. An example of this is a

child learning what cars are sports car simply by being told which of a large number of cars are
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2 BACKGROUND AND THEORY

sporty rather than by giving a precise specification of sportiness. This type of learning is called

supervised learning and the examples of input/output are referred to as the training data [9].

The function that maps inputs to outputs is called the target function. The solution to the

learning problem is an estimate of the target function and is the output of the learning algorithm.

The quality of a learning algorithm can be assessed by the number of miss-classifications made

during the learning phase. In a classification case the output is often referred to as the decision

function. If a classification is of the type sick/healthy or regular car/sports car, it is called a binary

classification. Multi-class classification deals with a finite number of classes.The ability of a function

to map unseen data into the right class is known as generalization, and it is this property that one

wishes to optimize. There are two main problems that make it hard for a learning algorithm to

have good performance. One is that the function it tries to learn may not be easy to verify. The

second problem is that the training data often is noisy and there is no guarantee that there exist

a function that maps training data well.

By trying to optimize the generalization instead of the true function we have a more “loose” task

to carry out. If our estimate of the true function gives the right output it satisfies the generalization

criterion. We do not have any constraints on the size or “meaning” of our function now. The ability

to generalize puts other constraints on the learning algorithm. We do not want a function that

correctly maps all the training examples, but makes essentially uncorrelated predictions on unseen

data. Functions like this are said to be over-fit. There are many different ways to keep away from

over-fitting, e.g. keeping the complexity of the decision function low.

2.3 Support Vector Machine

Support vector machines are based on the Structural Risk Minimization principle from machine

learning theory. The idea of structural risk minimization is to find a hypothesis H for which we can

guarantee the lowest true error. The true error of H is the probability that H will make an error on an

unseen and randomly selected test example. An upper bound can be used to connect the true error

of a hypothesis H with the error of H on the training set and the complexity of H the hypothesis space

containing H. Support vector machines and the hypothesis H which (approximately) minimizes this

bound on the true error by reactively and efficiently controlling the VC-Dimension of H. SVMs are

very universal learners. In their basic form, SVMs learn linear threshold functions. Nevertheless, by

a simple plug-in of an appropriate kernel function, they can be used to learn polynomial classifier,
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2 BACKGROUND AND THEORY

radial basic function (RBF) networks, and three-layer sigmoid neural nets. One remarkable property

of SVMs is that their ability to learn can be independent of the dimensionality of the feature space.

This means that even in the presence of very many features, if our data is separable using functions

from a lower dimensional hypothesis space. The same margin argument also suggests a heuristic

for selecting good parameter settings for the learner. The best parameter setting is the one which

produces the hypothesis with the lowest dimension. This allows fully automatic parameter tuning

without the expensive cross-validation, that is necessary in Artificial Neural Networks.

2.4 Cross-validation

It is important to put a measure on the whole procedure of SVM learning and classification. It is

also important to put some relevant statistics on the performance measurement. Even if SVM’s are

less prune to over-training than other machine learning methods we need to test the performance

on target data that is “unseen”, i.e. a model should be established without target data training. By

measuring the ability of the model to predict the target the final performance can be calculated.

How to choose the target and how many targets should be used are two common questions to

be answered. The method of cross-validation is used in this project. In cases where the amount

of labeled data is limited, cross-validation can be used. The idea of cross-validation is to split

the training set at random into N subsets. N minus one sets are then used for training and the

remaining set is used for testing the performance. The procedure is then repeated for all the N

subsets. One drawback of this approach is that the training procedure must be repeated N times

and each one might need a lot of computer time.

2.5 Performance measurements

The most obvious measurement would be to calculate the fraction correct predictions. However, in

our case only a small fraction of all peptides binds and therefore the predictions that no peptides

binds to the MHC molecule would be very good using this measure, i.e. we need to use other

measurements described below.

In two-class cases where the output from a prediction algorithm is continuous, the number of

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) depend on

where a threshold is drawn. When some of the data is used as test-set, they are predicted as either

binding or non-binding. A true binder that is predicted to be a binder is called a true positive
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2 BACKGROUND AND THEORY

(TP), a true binder that is predicted to be a non-binder is called a false negative (FN), a true

non-binder predicted to be a non-binder is a true negative (TN) and a true non-binder predicted to

be a binder is a FP. These test examples are taken through the SVM and are predicted to be either

a binder or a non-binder. In general there is a trade-off between the amount of false positives and

false negatives produced by the algorithm. One way to summarize this is ROC (receiver operating

characteristics). A ROC plot displays for different thresholds the sensitivity (TP/(TP+FN)) versus

false positive rate (FP/(FP+TN)). Another possibility is to plot the sensitivity against specificity

(TP/(TP+FP)) in a similar plot.

The four different types of hits can also be used to calculate the Matthews Correlation coeffi-

cient(Mc):

Mc = (TP ·TN)−(FP ·FN)√
(TN+FN)(TN+FP )(TP+FN)(TP+FP )

The Matthews correlation can vary between -1 and 1. A value of 1 means a perfect prediction,

0 equals a prediction no better than random and -1 equals total opposite predictions.
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3 Material and Methods

3.1 MHC peptide databases

3.1.1 MHCPEP: MHC binding database

MHCPEP 1 [10] is a curated database comprising over 13 000 peptide sequences known to bind

MHC molecules. Entries are compiled from published reports as well as from direct submissions of

experimental data. Each entry contains the peptide sequence, its MHC specificity and where avail-

able, experimental method, observed activity, binding affinity, source protein and anchor positions,

as well as publication references. The binding peptides of MHC II are extracted from MHCPEP

database using a Perl script.

3.1.2 ENSEMBLE: non-binding database

The Ensembl2 database project provides a bioinformatics framework to organize biology around

the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the

human genome sequence, with confirmed gene predictions that have been integrated with external

data sources. Since less than one percent of protein sequences are expected to bind to MHC class

II the Ensembl database can be considered as a non-binding peptide database. All the non-binding

peptides are extract from this database, using a Perl script.

3.2 SVMlight

The SVM software used in MHC class II binding prediction is SVMlight by Thorsten Joachims

(Version: 4.00 Release Date: 11.02.2002).3 SVM-light is an implementation of SVM for the problem

of pattern recognition. The optimization algorithm used in SVMlight is described in Joachims [11].

The algorithm has scalable memory requirements and can handle problems with many thousands

of support vectors efficiently. There is a set of kernels, or transformation functions, available for

the construction of the support vectors.

1http://wehih.wehi.edu.au/mhcpep/
2http://www.ensembl.org
3http://svmlight.joachims.org/
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3 MATERIAL AND METHODS

3.2.1 SVM learn and SVM classify

When the SVMlight source code is downloaded and compiled, it gives two ”functional” modules

for the users. SVM learn is used to train a model and the input is the input/output pairs of our

training examples. In our case with a 9 AA peptide sequence the input vectors are 181 elements

long (i.e. 180 elements for the 9 AA and an additional 1 or 0 for binder/non-binder). When a

model is learned by the SVM learn module it can be used for classification by the SVM classify

module.

3.2.2 Parameters in SVMlight

For SVMlight there are several parameters to handle the model, the most important is the kernel

type. The most common kernels in SVM are linear, polynomial, and radial basis function (RBF).

The kernels definition is shown in the table 2. Examples of other parameters that may be changed

are: trade-off between training error and margin, cost-factor-by which training errors on positive

examples out-weight errors on negative examples and different kernel specific parameters. There

is no exact theory of how to choose parameters. The choice of parameters that give the optimum

classification has to be investigated for each functional class and is of central importance to obtain

a good model. The procedure of choosing parameters is carried out by using a nested loop, i.e

systematic searching for the best combination of all parameters. Training is carried out using

three-fold cross validation.

Code Name Definition
0 linear K(xi, xj) = sxixj + c

1 polynomial K(xi, xj) = (sxixj + c)d

2 rbf K(xi, xj) = exp(− ||xi−xj ||2
δ2 )

Table 2: List of Kernel in SVM

3.3 Algorithm for prediction

The process in the algorithm includes: preprocessing of the binding database, initialization, model

cluster establishment and classification. An overview of the algorithm is shown in figure 4.
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3 MATERIAL AND METHODS

Figure 4: The overall algorithm steps for SVMHCII.

3.4 Preprocessing the database

Preprocessing the binding peptide is necessary. Firstly, preprocessing can avoid the over-training

of the data. If two or more same or similar sequences are used to train the model, then the model

might have a bias to these. Secondly, it is not clear which part of the sequences really binds to

the receptor. Preprocessing can be used to calculate the most likely binding region. The calcula-

tion is based on the following two ideas: the binding part is 9 AA long and if two subsequences

share identical subsequence of length 9 or longer, then the binding part exists in this subsequence.

MHCPEP contain many peptides binding to the same allele with similar long common subsequences.

For example, for allele HLA-DR51(DRB5*0101) four peptides (PVVHFFKNIVTPRTPPY, VVHF-

FKNIVTPRTPPY, VHFFKNIVTPRTPPY and HFFKNIVTPRTPPY) are in the database. Most

likely they all use the same binding region, the peptide HFFKNIVTPRTPPY. To detect similar

subsequences local alignments between all peptides binding to the same allele are performed. If

two sequence’s share more than more than 7 identical residues the shorter of them is excluded from

further studies. By this method, a reduced database that contains no peptides with identical parts

17



3 MATERIAL AND METHODS

is created. The amount of data for each allele in MHCPEP and the reduced database is shown in

table 3.

No Allele name MHCPEP Reduced Database
1 HLA-DR4(DRB1*0401) 504 197
2 HLA-DR1 460 142
3 HLA-DR1(DRB1*0101) 281 111
4 HLA-DR11(DRB1*1101) 170 81
5 HLA-DR2 296 76
6 HLA-DQ4(DQA1*0302xDQB1*0401) 101 69
7 HLA-DR7(DRB1*0701) 149 57
8 HLA-DR5 199 53
9 HLA-DQ7(DQB1*0301) 165 46
10 HLA-DR4(DRB1*0402) 139 46
11 HLA-DR3 115 45
12 HLA-DR7 211 43
13 HLA-DR8 59 40
14 HLA-DR4 117 38
15 HLA-DR4(DRB1*0404) 93 37
16 HLA-DR8(DRB1*0801) 66 36
17 HLA-DQ8(DQA1*0301xDQB1*0302) 98 35
18 HLA-DR4(DRB1*0405) 152 34
19 HLA-DR51(DRB5*0101) 124 31
20 HLA-DR52(DRB3*0101) 44 27
21 HLA-DR3(DRB1*0301) 77 24
22 HLA-DR15(DRB1*1501) 102 23
23 HLA-DR17(DRB1*0301) 44 23
24 HLA-DR17 117 22
25 HLA-DQ2 24 21
26 HLA-DR9(DRB1*0901) 71 20

Table 3: The comparison of MHCPEP and the reduced database

3.4.1 Initialization

The aim of our initialization procedure is to make an initial guess of binding regions that can be

used in the step-wise training described below. Initially a binding nonamer for every peptide in the

reduced database is generated. Here, all nonamers of a peptide are assumed to contain the binding

region. A SVM prediction model is made for these assumed binding nonamers.
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3.4.2 Model establishment and cluster

The model clusters are made using a “stepwise” algorithm, shown in figure 5. At step 0, the initial

model is used for the binding and non-binding peptides using 4-fold cross validation. For each

peptide the subsequence with the highest predicted binding is predicted. Those subsequence then

enter the binding dataset for the next step. At the same time, all other subsequences of this peptide

are excluded. Using this new set of binding data a new SVM is trained using the current binding

dataset. Using these predictions a new “binding” dataset is generated. This set is then used to

train new SVMs, that are used to predict new binding regions etc. This process continues for 23

rounds.

Figure 5: The algorithm of model cluster establishment

3.4.3 The prediction using model clusters

The query peptide will be separated into 9 AA subsequences,and all the 9 AA subsequence can

be classified by the models in the cluster. If a subsequence is recognized a score of one will be
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added. After the classification, subsequence with a score higher than the cutoff will be suggested

as a binding peptide. For the entry HFFKNIVTPRTPPY (14 AA), 6 subsequences are generated

HFFKNIVTP, FFKNIVTPR, FKNIVTPRT, KNIVTPRTP, NIVTPRTPP, IVTPRTPPY. After

the classification by the cluster for HLA-DRB5(0101), the result is shown in table 4. HFFKNIVTP

get a score of 20, which means twenty cluster models recognize it as binding region.

Rank Sequence Start Stop Score
1 HFFKNIVTP 1 9 20
2 FFKNIVTPR 2 10 0
3 FKNIVTPRT 3 11 0
4 KNIVTPRTP 4 12 0
5 NIVTPRTPP 5 13 0
6 IVTPRTPPY 6 14 0

Table 4: The result of one model cluster prediction.

3.5 Comparison with ProPred

ProPred is a free public MHC class II binding prediction server.4 [4] This server uses quantitative

matrices derived from published literature by [12] and also MHCPEP. To test our model cluster

methods, a comparison is made between SVMHCII and ProPred. Eleven different alleles can be

predicted by both servers. For each of then 50 binding peptides are extracted from MHCPEP

and 200 non-binding peptides are then selected randomly. The threshold for ProPred is set at 3%

(default), while the cutoff for the SVMHCII was set to be 5 after optimization. A perl script is

used to generate test peptides and visit both servers. The results from the comparison are studied

using the same measures as described above.

3.6 Test-set validation

To test the ability of the model cluster to recognize new MHC binding peptides MHC molecule, a

second cross validation test was also used. A quarter of the peptides from the reduced database

were selected as target. Because none of the peptides in the reduced database are similar to each

other these target should be unseen from the training data. Non-binding peptides were selected

from Ensembl with a variable length from 9 to 16 residues. Model clusters were made on the

4http://www.imtech.res.in/raghava/propred/index.html
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remaining binding peptides and ten times as many non-binding 9-AA peptides. This process was

then repeated five times to test the average ability to predict new peptides. In total 13 alleles with

more than 40 peptides in the reduced database were tested. Here we found that the cutoff of one,

i.e. that the test peptides is recognized by one model of the cluster, was best. Finally the accuracy

and Mc coefficient were calculated.
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4 Results and Discussion

4.1 Results from Model clusters

For every step, a Mc coefficient is calculated during the cross-validation. The Mc for HLA-

DRB5*0101 is calculated and recorded for 23 iterations, see figure 4.1. First, it can be observed

the the Matthews correlation coefficients are higher than zero, i.e. all prediction are better than

random. Figure 4.1 indicates that during the first few steps, the Mc improves, and then fluctuates

between 0.6 and 0.8. For this reason, models made during the first 3 steps will be skipped in the

cluster establishment, i.e. models made in step 4 to step 23 enter the clusters. For a general evalu-

ation of the performance for each allele, the average Mc during the 20 steps of model evaluation is

shown in table 5. For the 26 alleles, the average Mc vary from 0.57 (HLA-DQ2) to 0.78 (HLA-DR3).

4.2 Comparison with ProPred

Because ProPred only can predict peptides longer than 9 AA, all the non-binding peptides are

set at length between 10 to 15 AA, i.e. all nonamers in the target database are ignored. Table 6

shows the result of comparison between SVMHCII and ProPred. Only in one case of 11 alleles,

the Mc of ProPred prediction is better than SVMHCII. Figure 8 shows the overall comparison.

Figure 7 shows four examples of a sensitivity-specificity plot between the predictions of SVMHCII

and ProPred. From the plots we can see that SVMHCII performs rather well. Even for the allele

HLA-DR15(DRB1*1501), which is the only allele in the Mc comparison when ProPred is better,

the for which Se-Sp plot of SVMHCII performs better than that of ProPred.

Figure 6: The Mc in cross-validation for 23 steps
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No Allele name Average Mc
1 HLA-DR17(DRB1*0301) 0.67
2 HLA-DR7 0.66
3 HLA-DR4(DRB1*0402) 0.67
4 HLA-DR51(DRB5*0101) 0.74
5 HLA-DR15(DRB1*1501) 0.74
6 HLA-DR52(DRB3*0101) 0.69
7 HLA-DR5 0.68
8 HLA-DR11(DRB1*1101) 0.69
9 HLA-DR4 0.59
10 HLA-DQ4(DQA1*0302xDQB1*0401) 0.73
11 HLA-DQ7(DQB1*0301) 0.70
12 HLA-DQ8(DQA1*0301xDQB1*0302) 0.63
13 HLA-DR3 0.78
14 HLA-DR3(DRB1*0301) 0.68
15 HLA-DR2 0.73
16 HLA-DR4(DRB1*0404) 0.66
17 HLA-DR8(DRB1*0801) 0.65
18 HLA-DR1(DRB1*0101) 0.67
19 HLA-DR7(DRB1*0701) 0.68
20 HLA-DR8 0.67
21 HLA-DQ2 0.57
22 HLA-DR9(DRB1*0901) 0.65
23 HLA-DR4(DRB1*0401) 0.62
24 HLA-DR1 0.60
25 HLA-DR4(DRB1*0405) 0.58
26 HLA-DR17 0.66

Table 5: The average Mc for each allele in the 20 times cross-validation

4.3 Test-set validation

The above results indicate that the model clusters predict binding peptides from the current

database quite well. However, we also want to examine the predictions for unseen peptides. As

an example we used the allele HLA-DR11(DRB1*1101), see table 4.3. For the give different sets

of test-set predictions for the cluster, the average Mc is 0.62, i.e. only slightly lower than the Mc

obtained in the cluster establishment (0.69). This indicated the ability of the clusters to recognize

unseen peptides is acceptable.
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Figure 7: Sensitivity-Specificity plot of four alleles examples between SVMHCII and ProPred

5 Conclusions and future steps

5.1 Conclusions

In this thesis, a new Major Histocompatibility Complex class II binding approach, SVMHCII, is

developed. For 26 different MHC-alleles model clusters were created. Each model cluster contains

20 SVM based models made using a step-wise algorithm. Our results indicate that our method

perform at least on par with alternative methods.

The use of model cluster instead of one single model is better. Since the real binding region of

the MHC-II binding peptides is unknown it is difficult to train the model using machine learning

methods. The model cluster approach provided a method to solve this problem. All possible binding

regions (assumed to be monomeric subsequences in this project) have a chance to enter the model

cluster in some step. We have reasons to believe that the most frequently appearing peptides are
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Allele Name Mc Pro MC SVM Sp Pro Sp SVM Se Pro Se SVM
HLA-DR4(DRB1*0401) 0.48 0.58 0.59 0.55 0.54 0.84
HLA-DR1(DRB1*0101) 0.48 0.79 0.60 0.72 0.56 0.98
HLA-DR11(DRB1*1101) 0.35 0.73 0.36 0.70 0.60 0.90
HLA-DR7(DRB1*0701) 0.21 0.64 0.37 0.55 0.38 0.94
HLA-DR4(DRB1*0402) 0.31 0.63 0.47 0.53 0.42 0.96
HLA-DR4(DRB1*0404) 0.39 0.66 0.53 0.54 0.48 1.00
HLA-DR8(DRB1*0801) 0.46 0.76 0.54 0.65 0.62 1.00
HLA-DR4(DRB1*0405) 0.18 0.64 0.38 0.59 0.27 0.88
HLA-DR51(DRB5*0101) 0.27 0.62 0.45 0.56 0.34 0.9
HLA-DR15(DRB1*1501) 0.57 0.49 0.71 0.47 0.60 0.8
HLA-DR3(DRB1*0301) 0.28 0.69 0.50 0.64 0.3 0.9

Table 6: Comparison of the Mc coefficients (Mc), Specificity (Sp), and Sensitivity (Se) for twelve
MHC class-II alleles between SVMHCII (SVM) and ProPred (pro)

Figure 8: A comparison between ProPred and SVMHCII. For each cases, a star mark will be plot for the
corresponding Mc.

the most likely binding regions. Therefore a model cluster can provide more stable results than a

single model. The average Mc coefficients are 0.57-0.74, better than reported in earlier studies. The

clusters can provide varies of predictions with different sensitivity and specificity. By changing the

cutoff, the user can easily choose different sensitivity and specificity. Normally, an unseen binding

peptide should be recognized by at least one model in the cluster and if a peptide is determined by

more the 15 models, it is almost certain that it is binding.
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Times TP TN FP FN Sp Se Mc
1 13 76 5 8 0.72 0.62 0.59
2 10 75 6 11 0.63 0.47 0.44
3 15 76 5 6 0.75 0.71 0.67
4 16 76 5 5 0.76 0.76 0.70
5 12 80 1 9 0.92 0.57 0.68

Overall 66 383 22 39 0.75 0.63 0.62

Table 7: The Results of HLA-DR11(DRB1*1101) validation

5.2 Future development

For MHC class II alleles experimental methods to define the actual binding region of a peptide

for every peptides would be very useful. Though most of the peptides in Ensembl are non-MHC

II-binding. A database containing experimentally verified non-binding protein would also be very

useful. Further more data would be needed to expand the predictions to more alleles. Also more

new data would be useful to test the final models.
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