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Abstract

This project tries different methods to predict structural similarity be-
tween protein fragments. The methods used were a simple dot product,
an artificial neural network (ANN) and a support vector machine (SVM).
Different types of input were used, amino acid sequences, PSI-BLAST pro-
files and predicted secondary structures. The performance of the methods
were compared and the two learning methods, ANN and SVM performed
better than the dot product method. Contrary to earlier studies type of
input didn’t affect the performance.
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1 Introduction

This project concerned the three dimensional structure of proteins, an important
part in finding the function of a protein. Experimental methods can be both
expensive and time consuming and therefore methods are being developed to
determine the structure with computers. Proteins are constructed by joining
amino acids through peptide bonds into long chains. The chain is folded into
a three dimensonal structure and this study has examined the possibility to
predict the similarity between fragments based on the amino acid sequence.

Proteins have both secondary and tertiary structure where the tertiary struc-
ture is the full 3D structure. The secondary structure is a local structure with
three main types, helix, sheet and coil. The methods for predicting the sec-
ondary structure, for example with neural networks, are performing well with
a correctness of over 70%, this can give us information on the function of the
protein and be a step towards finding the tertiary structure.

The idea of trying to predict the structure of small fragments has already
been tried and the group of David Baker at the University of Washington has
been able to put fragments with known structure together into a full size protein
[1], 20% correct. The structure is determined by the sequence and although
interactions between distant residues is important for the overall structure of the
protein, there is also a relationship between local sequence and local structure
[2].

The project was conducted at Stockholm Bioinformatics Center (SBC) under
supervision of Arne Elofsson and was part of my year at the Stockholm Graduate
School of Molecular Life Sciences.

2 Theory

The two main methods used were artificial neural networks and support vector
machines. Both are established machine learning methods and a lot of imple-
mentations exist. Both methods also need to be trained (learning) before they
can be used on unknown data.

2.1 Artificial neural networks

Learning methods should produce better results than the dot product. Artificial
neural networks imitate the way biological neural networks work. It’s a network
of nodes, each node has three main features:

1. The synaptic weight. Each input signal is multiplied with a synaptic
weight before it reaches the summing junction.

2. The summing junction adds all incoming signals.

3. An activation function that limits the output to some value.

An external bias is also added, it decreases or increases the net input to the
activation function. The network used here is a multilayer feed forward network.
The input data is given to a layer of nodes that process the data and their output
is the input for the next layer of neurons, these are hidden neurons and you only
see the output from the last layer. The way the network learns is by adjusting
the synaptic weights. This is done using the back-propagation algorithm. First,



the information is passed trough the net and output is produced. Then, in the
backward pass, the synaptic weights are optimized so that the output of the
network becomes closer to the known correct answer.
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Figure 1: The neuron in the ANN. Inputs are multiplied with the weights and
added up. The sum is sent to the activation function.

2.2 Support vector machines

SVM is another learning method and operates by finding a hypersurface in the
space of possible inputs. This hypersurface will attempt to split the positive
examples from the negative examples. Given ! observations where each obser-
vation consists of a pair: a vector z; € R", i=1,....] and a value y; that tells if
it is a true example or a false. Here the vector x is the vector with the encoded
sequence (see 3.2) and the y is either 1 or 0 for similar or non similar. It is
assumed that there exists some unknown probability distribution P(x,y) from
with the data is drawn. The support vector machine is a machine that we want
to learn the mapping x — y. The machine is defined by a set of mappings
x — f(x,0a) and when we train the machine we adjust the variables «, trying
to find the function that gives the smallest error (compare with changning the
synaptic weights in the neural network).

3 Methods and data format

3.1 The fragments

The data used was amino acid sequencies for proteins. The sequences were frag-
mented, divided into smaller chains. Each fragment has a length, fragment size,
[. But the amino acids on each side of the fragment could also contain infor-
mation about similarity and therefore these can also be given to the programs.
The number of adjacent residues together with the fragment is called the input
window size.

3.2 Sequence data

To put the sequence data into the computer it needs to be coded. Several meth-
ods to do this exist but the one used here is sparse encoding scheme. This takes
an amino acid sequence and each residue is encoded by a vector of 20 elements:



ALA: 10000000000000000000
CYS: 01000000000000000000
ASP: 00100000000000000000

More information can be used when encoding the sequence. Proteins with
similar sequencies usually have similar structures so instead of just using a single
amino acid in a given position we can look at how often different aminoacids ap-
pear in that position. A version of BLAST[4], Position-Specific-Iterated BLAST,
PSI-BLAST(3] can give this information. PSI-BLAST searches a protein se-
quence database with a query sequence and constructs a multiple alignment
and a profile with the frequencies of amino acids.

Example, a high value indicates that the amino acid is common at this
position:
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3.3 Including secondary structure predictions

The secondary structure predicition can also be used in the learning methods.
Each amino acid can be either helix, encoded as the vector, sheet or coil. These
were also encoded as vectors:

Helix 100
Sheet 010
Coil 001

The secondary structure prediction vector was inserted into the PSI-BLAST
sequence after each amino acid.

3.4 Methods

Different methods have been used here to predict similarity between protein
fragments, artificial neural networks (ANN), support vector machines (SVM)
and a dot product. The ANN and SVM are learning methods. They are given
a dataset for training, this contains positive and negative examples and the
correct answer for each example. The methods need to be trained before they
can be used on unknown data.

3.5 Dot Product

One of the simplest ways of comparing to compare two protein fragments is to
make a dot product between the two vectors consisting of the combined amino
acid vectors (see section 3.2) for each sequence. Similar sequencies should give
a high and nonsimilar a low dot product. The pairs with a dot product above
a certain cut off were selected as similar fragments. Baker [1] finds similar
structures by doing at PSI-BLAST search and selecting proteins with a scoring
function biased, but not constrained, to the secondary structure prediction.



3.6 Measuring the performance
3.6.1 MCC

The Mathews Correlations Coefficient (MCC) is a measure used to measure
the performance of a predicting machine. It is better than percent of correctly
classified examples when the datasets differ alot in number of examples.

MCC — pn—ou
( \/(p—o) (pt+u)(n+o)(n+u) )

where:
e p is the number of correctly classified similar fragments.
e n is the number of correctly classified non similar fragments.

e 0 is the number of non similar fragments incorrectly classified as similar
fragments.

e u is the number of similar fragments incorrectly classified as non similar
fragments.

MCC is a value between -1 and 1 where a 1 means a fully perfect prediction
and -1 means a fully imperfect prediction. A MCC of 0 means that there is no
correlation at all.

3.6.2 Sensitivity and Specificity

e Sensitivity is a value of how many of the similar fragments that the method
finds.
P

Sensitivity = e

e Specificity is a value of how many of the fragments, classified as similar,
that are similar.
p

Speci ficity = s

4 Implementation

The goal was to tell if two protein fragments are similar. This needs the input
data needed to be formated, get a prediction and output data to be handled.
Programs, in Perl, formated the input data and run the prediction programs.
The perl programs were based on a program by Christian Ottosson [9]. The
neural network was the Netlab [5][6] library for Matlab [10]. The support vector
machine was SV M'9"[7] a SVM implementation i C.

The datasets were randomly selected proteins from the SCOP [11] [12]
classes 1 (all alpha), 2 (all beta), 3 (alpha and beta) and 4 (alpha and beta).
The data was divided into training and validation sets. The proteins were
fragmented and all fragments were used resulting in 10000 to 20000 fragments.
Ten different validation set - training set pairs were used in the comparisons of
the methods.

Twelve different validation set - training set pairs with were also constructed,
six with proteins from only class 1 and six with proteins from class 2.

To train and validate the methods we need the similarity between two frag-
ments, this was defined as the root mean square deviation (RMSD) between the



Cy coordinates for the two fragments. This was calculated by a RMSD program
using the Protein Data Bank (PDB)[8] files for the protein and was turned into
a discret value, 1 if the RMSD was below the cutoff (similar) and 0 if it was
above the cut off (non similar). The cut off used was 1 A.

To train the SVM and ANN effectively the training sets needed to be bal-
anced, the balance is the number of negative examples divided with the number
of positive examples. The balance used for the training sets was 3.

The balance in real data is much higher and since it turned out that the
number of positive examples was even lower for proteins with a lot of beta
sheets the validation sets were also balanced to give more positive examples.
The validation set balance was 10.

The fragment size was 9 residues and the window sizes from 9 to 25 with
steps of two were tried. A window size of nine means that no residues outside
the fragment was used and 25 means that 8 residues on each side of the fragment
was used. The prediction didn’t improve with a bigger window size and the final
comparisons of the methods was made with a window size of 9.

Some fragments were very similar and appeared a lot in the positive exam-
ples. To not give a bias for these in the training a constraint was introduced, a
fragment couldn’t appear in more than three positive examples.

Fragment size 9
Window size 9-25
Balance, training set 3
Balance, validation set | 10
RMSD cut off 1A

Table 1: Implementation data.

5 Results
Method | data MCC | SD | Sens | Spec
dotp profile 0.09 | 0.02 | 0.16 | 0.30
ANN sequence 0.23 | 0.08 | 0.45 | 0.24
ANN profile 0.26 | 0.07 | 047 | 0.26
SVM profile 0.24 | 0.09 | 0.19 | 0.42
ANN profile + sec.struct. 0.28 | 0.07 | 0.55 | 0.26

Table 2: Mean values, MCC, standard deviaton, Sensitivity and Specificity for
different methods and different input data. Sequence is amino acid sequence,
profile is PSI-BLAST profile.

5.1 Dot Product

The dot product was simple and ran fast. Only the PSI-BLAST data input
was used and different cut offs were tested and the best one was selected. The
method didn’t perform well, the mean MCC was 0.09+0.02 and it didn’t improve
with a bigger window size, see Table 2 and figure 2
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Figure 2: Dotproduct, MCC for different window sizes

5.2 Neural network

The neural network had a mean MCC that varied very little between the differ-
ent inputs (Table 2.) Several different inputs were tested:

e Sequence, only the amino acid sequence. MCC 0.23+0.08
e Profile, the PSI-BLAST profile. MCC 0.26+0.07
e Profile and secondary structure prediction. MCC 0.28+0.07

The performance didn’t increase with a bigger window (figure 3).
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Figure 3: Neural network, MCC for different window sizes

5.3 Support vector machine

The input to the support vector machine was the PSI-BLAST profile as input
and the MMC was 0.24£0.09. The performance didn’t increase with window
size here either.

5.4 Helixes and sheets

To see if there was a difference in how easy it was to find similar fragments for
proteins with a lot of helixes and proteins with a lot of sheets two data sheets.



The data sets with only helixes and only sheets were tested on the ANN and
the SVM. The performance of the two methods did not differ much and they
both showed the same pattern, predicting helixes was better than for the mixed
datasets with MMC of 0.44 (ANN) and 0.48 (SVM), table 3) The MCC for the
sheets was zero.

Method | data MCC | stdv | Sens | Spec
ANN profile, helix 0.44 | 0.04 | 0.57 | 0.55
SVM profile, helix 0.48 | 0.03 | 0.69 | 0.52
ANN profile, sheet 0.02 | 0.03 | 0.18 | 0.10
SVM profile, sheet 0

Table 3: Proteins with only helixes and only sheets.

6 Conclusion

The learning methods are clearly better than the simple dotproduct method.
The SVM and ANN performance is similar. The different inputs gave a slightly
higher mean MCC when including the secondary structure prediction but the
standard deviation is so large (0.07) that it can’t be said to be better.

The problems seem to arise when trying to predict fragments from proteins
containing a lot of sheets. The performance for helixes is almost twice that of
the mixed data sets. Instead of comparing all the fragments it would probably
be better to build a library with frequently occuring fragment structures. We
can find similar fragments in proteins containing a lot of sheets but it’s time
consuming and they disappear in all the non similar fragments.

It is probably also easier to find structures for fragments that are only in a
helix or a sheet, fragments on border lines can differ much more. Maybe the
secondary structure prediction could come in handy there, you don’t fragment
the unknown protein randomly but in different secondary structures. Or you
could try to fragment the protein several times (if you don’t want do do all
possible combinations) and see if the performance changes.

The neural networks and the SVM didn’t differ much in time used for the
computations but the SVM seemed to need more memory. This of course de-
pends on the computers and the form of networks used but 50-70 proteins each
for the training and validation seemed to be the limit.
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